Improvement of the foaming process for 4045 and 6061 aluminium foams by using the Taguchi methodology


Taguchi methodology has been applied to the production process of aluminium foams to investigate the variability detected in several properties (including bulk density, outward appearance and density homogeneity along foaming direction), for foaming tests carried out under identical conditions. The analysis of the process has been performed separately for two different alloys, the 4045 and 6061. The results have allowed finding the main factors that influence those properties. In addition, it has been possible to establish those foaming conditions able to minimize the variability in density, to improve the outward appearance and to obtain a higher homogeneity in density, all at the same time. Different final factors have been found for the two alloys; such differences have been explained in terms of the different viscosity of the aluminium melts as well as the different content of foaming agent.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Banhart J (2001) Prog Mater Sci 46:559

    Article  CAS  Google Scholar 

  2. 2.

    Baumgärtner D, Banhart J (2000) Adv Eng Mater 2(4):168

    Article  Google Scholar 

  3. 3.

    Banhart J (1999) Europhys News 1/1999

  4. 4.

    Simancík F, Kovácik J, Schörghuber F (1997) In: Banhart J (ed) Metallschäume, proc symp metal foams. MIT-Verlag/Publishing Bremen, Bremen, Germany, p 171

  5. 5.

    Schäffler P, Rajner W (2003) International conference “advanced metallic materials.” Smolenice, Slovakia, p 258

  6. 6.

    Maurer M, Zhao L, Lugscheider E (2002) Adv Eng Mater 4(10):791

    Article  CAS  Google Scholar 

  7. 7.

    Gergely V, Clyne B (2000) Adv Eng Mater 2(4):175

    Article  CAS  Google Scholar 

  8. 8.

    Duarte I, Banhart J (2000) Acta Mater 48:2349

    Article  CAS  Google Scholar 

  9. 9.

    Helfen L, Baumbach T, Stanzick H, Banhart J, Elmoutaouakkil A, Cloetens P (2002) Adv Eng Mater 4(10):808

    Article  CAS  Google Scholar 

  10. 10.

    Stanzick H, Klenke J, Danilkin S, Banhart J (2002) Appl Phys A 74(Suppl):S1118

    Article  CAS  Google Scholar 

  11. 11.

    Banhart J, Bellmann D, Clemens H (2001) Acta Mater 49:3409

    Article  CAS  Google Scholar 

  12. 12.

    Gergely V, Clyne TW (2004) Acta Mater 52:3047

    Article  CAS  Google Scholar 

  13. 13.

    Koehler SA, Stone HA, Brenner MP, Eggers J (1998) Phys Rev E 58(2):2097

    Google Scholar 

  14. 14.

    Wübben T, Stanzick H, Banhart J, Odenbach S (2003) J Phys: Condens Mater 15:S427

    Article  Google Scholar 

  15. 15.

    Yang CC, Nakae H (2003) J Mater Process Technol 141:202

    Article  CAS  Google Scholar 

  16. 16.

    Zhaojin WU, Deping HE (2000) Chin Sci Bull 45(18):1667

    Article  Google Scholar 

  17. 17.

    Yang CC, Nakae H (2000) J Alloys Compd 313:188

    Article  CAS  Google Scholar 

  18. 18.

    Rodríguez-Pérez MA, Almanza O, del Valle JL, González A, de Saja JA (2001) Polym Testing 20(3):253

    Article  Google Scholar 

  19. 19.

    Pan LK, Wang CC, Hsiao YC, Ho KC (2004) Optics Laser Technol 37:33

    Google Scholar 

  20. 20.

    Taner T, Antony J (2006) Int J Health Care Qual Assur Inc. Leadersh Health Serv, vol 19, p XXVI

  21. 21.

    Roy T (1990) A premier on the Taguchi method. Society of Manufacturing Engineers, Michigan

    Google Scholar 

  22. 22.

    Bendell J, Disney WA (1989) Pridmore Taguchi methods: applications in world industry. IFS Publications, UK

    Google Scholar 

  23. 23.

    Ross PJ (1988) Taguchi techniques for quality engineering. Lost function, Orthogonal experiment, parameters and tolerance design. Mc Graw-Hill

  24. 24.

    Disndale AT, Quested PN (2004) J Mater Sci 39:7221. DOI: 10.1023/B:JMSC.0000048735.50256.96

    Article  Google Scholar 

Download references


Financial support from the Spanish Ministry of Science and Education (MAT 2003-06797, MAT 2002-04505-C02-01, FPU grants) is gratefully acknowledged. FEDER funding is also acknowledged.

Author information



Corresponding author

Correspondence to Eusebio Solórzano.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Solórzano, E., Reglero, J.A., Rodríguez-Pérez, M.Á. et al. Improvement of the foaming process for 4045 and 6061 aluminium foams by using the Taguchi methodology. J Mater Sci 42, 7227–7238 (2007).

Download citation


  • Foam
  • Taguchi Method
  • Noise Factor
  • Aluminium Foam
  • Metal Foam