Journal of Materials Science

, Volume 42, Issue 16, pp 6541–6548 | Cite as

Flow through an evolving porous media—compressed foam

  • D. A. Graf von der Schulenburg
  • M. Paterson-Beedle
  • L. E. Macaskie
  • L. F. Gladden
  • M. L. JohnsEmail author


Magnetic Resonance Imaging (MRI) techniques were applied such that they were able to provide simultaneously both 3D pore-scale velocity and microstructural data for polyurethane foam with water flowing through it. This necessitated the use of velocity gating of the relevant images in order to describe accurately the position of the solid foam walls; a pore thinning algorithm was used to differentiate individual pores within the foam pore space where minima in hydraulic radius defined pore boundaries. This methodology was then used to explore the effect of foam compression on both pore geometric characteristics and pore-scale velocity fields. Pore volumes were seen to decrease from 3.27 to 0.96 mm3 as porosity was reduced from 0.84 to 0.61 and increased flow channelling, adjacent to the containing cylinder, was observed. The velocity fields were compared with corresponding Lattice Boltzmann flow simulations with good agreement being produced.


Foam Lattice Boltzmann Method Lattice Boltzmann Compression Stage Foam Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to acknowledge Dr. Peter R. Laity for acquiring the X-ray image of the foam, Reticel, Belgium for supplying the foam and the EPSRC for financial support.


  1. 1.
    Bear J (1972) In: Dynamics of fluids in porous media. Elsevier, New YorkGoogle Scholar
  2. 2.
    Sederman AJ, Johns ML, Bramley AS, Alexander P, Gladden LF (1997) Chem Eng Sci 52:2239CrossRefGoogle Scholar
  3. 3.
    Sederman AJ, Johns ML, Alexander P, Gladden LF (1998) Chem Eng Sci 53:2117CrossRefGoogle Scholar
  4. 4.
    Johns ML, Sederman AJ, Bramley AS, Gladden LF, Alexander P (2000) AIChE J 46:2151CrossRefGoogle Scholar
  5. 5.
    Mantle MD, Sederman AJ, Gladden LF (2001) Chem Eng Sci 56:523CrossRefGoogle Scholar
  6. 6.
    Mantle MD, Bijeljic B, Sederman AJ, Gladden LF (2001) MRI 19:527CrossRefGoogle Scholar
  7. 7.
    Johns ML, Sederman AJ, Davis S, Wilson A, Gladden LF (2003) AIChE J 49:1076CrossRefGoogle Scholar
  8. 8.
    Gibson LJ, Ashby MF (1988) In: Cellular solids. Cambridge University PressGoogle Scholar
  9. 9.
    Macaskie LE, Yong P, Paterson-Beedle M, Thackray AC, Marquis PM, Sammons RL, Nott KP, Hall LD (2005) J Biotechnol 118:187CrossRefGoogle Scholar
  10. 10.
    Nott KP, Heese FP, Hall LD, Macaskie LE, Paterson-Beedle M (2005) AIChE J 51:3072CrossRefGoogle Scholar
  11. 11.
    Weiare D, Hutzler S (1999) In: The physics of foam. Oxford University PressGoogle Scholar
  12. 12.
    Kose K (1996) J Magn Reson 118:195CrossRefGoogle Scholar
  13. 13.
    Kashiwagi K, Kose K (1997) NMR Biomed 10:13CrossRefGoogle Scholar
  14. 14.
    Saadatfar M, Arns CH, Knackstedt MA, Senden T (2004) Colliods Surf A 263:284CrossRefGoogle Scholar
  15. 15.
    Viot P, Bernard D (2006) J Mater Sci 41:1277CrossRefGoogle Scholar
  16. 16.
    Baldwin CA, Sederman AJ, Mantle MD, Alexander P, Gladden LF (1996) J Colloid Interf Sci 181:79CrossRefGoogle Scholar
  17. 17.
    Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Oxford Press, New York, p 420Google Scholar
  18. 18.
    Chen S, Doolen GD (1998) Annu Rev Fluid Mech 30:329CrossRefGoogle Scholar
  19. 19.
    He X, Luo LS (1997) J Stat Phys 88:927CrossRefGoogle Scholar
  20. 20.
    Wolfram S (1986) J Stat Phys 45:471CrossRefGoogle Scholar
  21. 21.
    Gallivan MA, Noble DR, Georgiadis JG, Buckius RO (1997) Int J Numer Methods Fluids 25:249CrossRefGoogle Scholar
  22. 22.
    Sullivan SP, Johns ML, Matthews SM, Fisher AC (2005b) Electrochem Commun 7:1323Google Scholar
  23. 23.
    Sullivan SP, Gladden LF, Johns ML (2006) J Non-Newtonian Fluid Mech 133:91CrossRefGoogle Scholar
  24. 24.
    Viot P, Beani F, Lataillade J-L (2005) J Mater Sci 40:5829CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • D. A. Graf von der Schulenburg
    • 1
  • M. Paterson-Beedle
    • 2
  • L. E. Macaskie
    • 2
  • L. F. Gladden
    • 1
  • M. L. Johns
    • 1
    Email author
  1. 1.Department of Chemical EngineeringUniversity of CambridgeCambridgeUK
  2. 2.School of BioscienceUniversity of BirminghamBirminghamUK

Personalised recommendations