Skip to main content
Log in

Blast impact response of aluminum foam sandwich composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Military and civilian structures can be exposed to intentional or accidental blasts. Aluminum foam sandwich structures are being considered for energy absorption applications in blast resistant cargo containers, ordnance boxes, transformer box pads, etc. This study examines the modeling of aluminum foam sandwich composites subjected to blast loads using LS-DYNA software. The sandwich composite was designed using laminated face sheets (S2 glass/epoxy and aluminum foam core. The aluminum foam core was modeled using an anisotropic material model. The laminated face sheets were modeled using material models that implement the Tsai-Wu and Hashin failure theories. Ablast load was applied using the CONWEP blast equations (*LOAD_BLAST) in LS-DYNA. This paper discusses the blast response of constituent S2-glass/epoxy face sheets, the closed cell aluminum foam core as well as the sandwich composite plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. HALL, Composite Structures 11 (1989) 101.

    Article  Google Scholar 

  2. Z. XUE and J. W. HUTCHINSON, International Journal of Mechanical Sciences 45 (2003) 687.

    Article  Google Scholar 

  3. M. O. CRITCHFIELD, T. D. JUDY and A. D. KURZWEIL, Marine Structures 7 (1994) 475.

    Article  Google Scholar 

  4. M. F. ASHBY, A. G. EVANS, N. A. FLECK, L. J. GIBSON and J. W. HUTCHINSON, “Metal Foams: A Design Guide.” (Butterworth-Heinemann, 2000).

  5. A. G. EVANS, J. W. HUTCHINSON and M. F. ASHBY, Progress in Materials Science 43 (1999) 171.

    Article  Google Scholar 

  6. A. G. HANSSEN, L. ENSTOCK and M. LANGSETH, Int. J. Impact Eng. 27 (2002) 593.

    Article  Google Scholar 

  7. S. M. LIANG, L. N. WU and R. L. HSU, Shock waves 9 (1999) 367.

    Article  Google Scholar 

  8. V. S. DESHPANDE and N. A. FLECK, J. Mech. Phys. of Solids 48 (2000a) 1253.

    Article  CAS  Google Scholar 

  9. U. K. VAIDYA, S. PILLAY, C. A. ULVEN, A. R. S. GAUTAM, D. GROW and B. MATHEW, in Proceedings of the 14th International Conference on Composite Materials (ICCM/14), Paper ID EM03-332 (CD-ROM Proceedings, 2003).

  10. J. BANHART, Prog. Mater. Sci. 46 (2001) 559.

    Article  CAS  Google Scholar 

  11. CYMAT Technical Manual, Cymat Corp, Ontario, Canada (2004).

  12. E. ANDREWS, W. SANDERS and L. J. GIBSON, Mate. Sci. Eng. A 270 (1999) 113.

    Article  Google Scholar 

  13. P. H. THORNTON and C. L. MAGEE, Metallur. Transac. A 6A (1975) 1253.

    Article  CAS  Google Scholar 

  14. A. E. SIMONE AE and L. J. GIBSON, Acta Materialia 46 (1998b) 2139.

    Article  Google Scholar 

  15. A. M. KRAYNIK and D. A. REINELT, J. Colloid Interface Sci. 181 (1996) 511.

    Article  CAS  Google Scholar 

  16. L. D. KENNY, Materials Science Forum 217 (1996) 1183.

    Google Scholar 

  17. F. B. A. BESHARA, Computers and Structures (1994) 585.

  18. G. RANDERS-PEHRSON and K. A. BANNISTER, ARL-TR-1310 (Army Research Laboratory, Aberdeen Proving Ground, 1997).

  19. D. W. HYDE, SL-88-1 (U.S. Army Corps of Engineers Waterways Experiment Station Instruction, 1993).

  20. C. N. KINGERY and G. BULMASH, ARBRL-TR-02555 (U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, 1984).

  21. W. ALTENHOF, A. M. HARTE and R. TURCHI, in Proceedings of the 7th International LS-DYNA Users Conference, May 2002, (Lawrence Livermore Technology Corporation and Engineering Technology Associates, Inc 2002) 13.

  22. J. O. HALLQUIST, “LS-DYNA User’s Manual.” (Livermore Software Technology Corporation, 2004).

  23. S. W. TSAI and E. M. WU, J. Comp. Mater. 5 (1971) 73.

    Article  Google Scholar 

  24. Z. HASHIN, J. Applied Mechanics 47 (1980) 329.

    Article  Google Scholar 

  25. LSTC help (ftp://ftp.lstc.com/outgoing/faq/, 2002).

  26. C. F. YEN, in Proceedings of the 7th International LS-DYNA Users Conference, May 2002, (Lawrence Livermore Technology Corporation and Engineering Technology Associates, Inc 2002) 15.

  27. S. BALA, FEA Information International Newsletter 8 (2001a) 8.

    Google Scholar 

  28. J. T. BEALS and M. S. THOMPSON, J. Mater. Sci. 32 (1997) 3595.

    Article  CAS  Google Scholar 

  29. G. GIOUX, T. M. MCCORMACK and L. J. GIBSON, Int. J. Mech. Sci. 42 (2000) 1097.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday K. Vaidya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sriram, R., Vaidya, U.K. & Kim, JE. Blast impact response of aluminum foam sandwich composites. J Mater Sci 41, 4023–4039 (2006). https://doi.org/10.1007/s10853-006-7606-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-7606-4

Keywords

Navigation