Advertisement

Journal of Materials Science

, Volume 41, Issue 8, pp 2201–2209 | Cite as

Sol-gel elaboration and characterization of YAG: Tb3+ powdered phosphors

  • A. Potdevin
  • G. ChadeyronEmail author
  • D. Boyer
  • R. Mahiou
Article

Abstract

Pure and Tb3+-doped Y3Al5O12 materials have been successfully synthesized from sol-gel based alkoxide precursors. Their formation process, structure and microstructure were examined by means of X-ray diffraction (XRD), thermal analysis combined with infrared spectroscopy (TG-IR / TDA), infrared spectroscopy (IR), scanning electron microscopy (SEM) and solid-state NMR study (27Al MAS NMR). Pure highly crystalline YAG powders were obtained from 900°C. Laser induced luminescence spectra as well as decay times versus Tb3+ concentration were also studied. The well known 5D35D4 cross-relaxation and concentration quenching phenomena were observed. Decay times of the green emission (λem = 544 nm) were mainly found to be exponential with time constant lower than 5 ms. Finally, the optimal terbium concentration for the luminescence efficiency of YAG:Tb3+ powders was determined.

Keywords

Thermal Analysis Infrared Spectroscopy Decay Time Alkoxide Luminescence Spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. IKESUE, T. KINOSHITA, K. KAMATA and K. YOSHIDA, J. Am. Ceram. Soc. 78 (1995) 1033.CrossRefGoogle Scholar
  2. 2.
    S. SHIONOYA, in “Phosphor Hanbook” (CRC Press, Boca Raton, FL, 1998) p. 394 and p. 515.Google Scholar
  3. 3.
    G. BLASSE and A. BRIL, Appl. Phys. Lett. 11 (1967) 53.Google Scholar
  4. 4.
    K. OHNO and T. ABE, J. Electrochem. Soc. 133 (1986) 638.Google Scholar
  5. 5.
    Idem., ibid. 134 (1987) 2072.Google Scholar
  6. 6.
    R. P. RAO, in Proceedings of SPIE, Vol. 2651 (Liquid Crystal Materials, Devices, and Applications IV), San Jose, January–February 1996, edited by R. Shashidhar (SPIE, Washington, 1996) p. 139.Google Scholar
  7. 7.
    D. RAVICHANDRAN, R. ROY, A. G. CHAKHOVSKOI, C. E. HUNT, W. B. WHITE and S. ERDEI, J. Lumin. 71 (1997) 291.Google Scholar
  8. 8.
    C. H. PARK, S. J. PARK, B. Y. YU, H. S. BAE, C. H. KIM, C. H. PYUN and G. Y. HONG, J. Mater. Sci. Lett. 19 (2000) 335.Google Scholar
  9. 9.
    D. R. MESSIER and G. E. GAZZA, Amer. Ceram. Soc. Bull. 51 (1972) 692.Google Scholar
  10. 10.
    H. WANG, L. GAO and K. NIIHARA, Mat. Sci. Eng. A 288 (2000) 1.Google Scholar
  11. 11.
    T. CHEN, S. C. CHEN and C. YU, J. Solid State Chem. 144 (1999) 437.Google Scholar
  12. 12.
    X. LI, H. LIU, J. WANG, X. ZHANG and H. CUI, Opt. Mater. 25 (2004) 407.Google Scholar
  13. 13.
    Y. C. KANG, I. W. LENGGORO, S. B. PARK and K. OKUYAMA, J. Phys. Chem. Solids 60 (1999) 1855.CrossRefGoogle Scholar
  14. 14.
    Y. HAKUTA, T. HAGANUMA, K. SUE, T. ADSCHIRI and K. ARAI, Mat. Res. Bull. 38 (2003) 1257.Google Scholar
  15. 15.
    Y. HAKUTA, K. SEINO, H. URA, T. ADSCHIRI, H. TAKIZAWA and K. ARAI, J Mater. Chem. 9 (1999) 2671.Google Scholar
  16. 16.
    G. GOWDA, J. Mater. Sci. Lett. 5 (1986) 1029.CrossRefGoogle Scholar
  17. 17.
    Y. H. ZHOU, J. LIN, S. B. WANG and H. J. ZHANG, Opt. Mater. 20 (2002) 13.Google Scholar
  18. 18.
    Y. H. ZHOU, J. LIN, M. YU, S. M. HAN, S. B. WANG and H. J. ZHANG, Mat. Res. Bull. 38 (2003) 1289.Google Scholar
  19. 19.
    J. ZHANG, J. NING, X. LIU, Y. PAN and L. HUANG, Mat. Res. Bull. 38 (2003) 1249.Google Scholar
  20. 20.
    J. MCKITTRICK, K. KINSMAN, S. CONNELL, E. SLUZKY and K. HESSE in Ceramic Transactions, Vol. 26 (Forming Science and Technology for Ceramics), edited by M. J. Cima (The American Ceramic Society, Westville, OH, 1992) p. 17.Google Scholar
  21. 21.
    R. MANALERT and M. N. RAHAMAN, J. Mater. Sci. 31 (1996) 3453.CrossRefGoogle Scholar
  22. 22.
    R. S. HAY, J. Mater. Res. 8 (1993) 578.CrossRefGoogle Scholar
  23. 23.
    S.M. SIM, K.A. KELLER and T.I. MAH, ibid. 35 (2000) 713.Google Scholar
  24. 24.
    O. YAMAGUCHI, K. TAKEOKA and A. HAYASHIDA, J. Mater. Sci. Lett. 10 (1990) 101.CrossRefGoogle Scholar
  25. 25.
    O. YAMAGUCHI, K. TAKEOKA, K. HIROTA, H. TAKANO and A. HAYASHIDA, J. Mater. Sci. 27 (1992) 1261.Google Scholar
  26. 26.
    M. VEITH, S. MATHUR, A. KAREIVA, M. JILAVI, M. ZIMMER and V. HUCH, J. Mater. Chem. 9 (1999) 3069.CrossRefGoogle Scholar
  27. 27.
    S. K RUAN, J. G. ZHOU, A. M. ZHONG, J. F. DUAN, X. B. YANG and M. Z. SU, J. Alloys Compounds 275–277 (1998) 72.CrossRefGoogle Scholar
  28. 28.
    D. BOYER, G. BERTRAND-CHADEYRON and R. MAHIOU, Opt. Mater. 26 (2004) 101.Google Scholar
  29. 29.
    D. BOYER, G. BERTRAND-CHADEYRON and R. MAHIOU, in Proceedings of SPIE, Vol. 5250 (Advances in Optical Thin Films), Saint-Etienne, France, Sept. 2003, edited by R. Shashidhar (SPIE, Washington, 2004) p. 286.Google Scholar
  30. 30.
    J. Y. CHOE, D. RAVICHANDRAN, S. M. BLOMQUIST, D. C. MORTON, K. W. KIRCHNER, M. H. ERVIN and U. LEE, Appl. Phys. Lett. 78 (2001) 3800.Google Scholar
  31. 31.
    J. R. LO, T. Y. TSENG, J. H. TYAN and C. M. HUANG, in Proceedings of the 9th International Vacuum Microelectronics Conference, St-Petersburg, Russia, December 1996 (Nevskii Kur’er, St-Petersburg, 1996) p. 197.Google Scholar
  32. 32.
    J. Y. CHOE, D. RAVICHANDRAN, S. M. BLOMQUIST, K. W. KIRCHNER, E. W. FORSYTHE and D. C. MORTON, J. Lumin. 93 (2001) 119.CrossRefGoogle Scholar
  33. 33.
    G. CHADEYRON, R. MAHIOU, M. EL-GHOZZI, A. ARBUS, D. ZAMBON and J. C. COUSSEINS, ibid. 72–74 (1997) 564.Google Scholar
  34. 34.
    J. R. LO and T. Y. TSENG, Mater. Chem. Phys. 56 (1998) 56.Google Scholar
  35. 35.
    K. J. D MACKENZIE and T. KEMMITT, Thermochim. Acta 325 (1999) 13.Google Scholar
  36. 36.
    A. M. HOFMEISTER and K. R. CAMPBELL, J. Appl. Phys. 72 (1992) 638.CrossRefGoogle Scholar
  37. 37.
    P. VAQUEIRO and M. A. LOPEZ-QUINTELA, J. Mater. Chem. 8 (1998) 161.CrossRefGoogle Scholar
  38. 38.
    J. DONG and K. LU, Phys. Rev. B 43 (1991) 8808.Google Scholar
  39. 39.
    W. S. JUNG, S. AHN and D. KIM, J. Mater. Chem 8 (1998) 1869.Google Scholar
  40. 40.
    G. ENGELHARDT and D. MICHEL in “High Resolution Solid-state NMR of Silicates and Zeolites” (John Wiley & Sons, Chichester, 1987) p. 143.Google Scholar
  41. 41.
    W. F. VAN DER WEG, TH. J. A. POPMA and A. T. VINK, J. Appl. Phys. 57 (1985) 5450.CrossRefGoogle Scholar
  42. 42.
    D. J. ROBBINS, B. COCKAYNE, B. LENT and J. L. GLASPER, Solid State Commun. 20 (1976) 673.Google Scholar
  43. 43.
    D. HRENIAK, W. STREK, P. MAZUR, R. PAZIK and M. ZABKOWSKA-WACLAWEK, Opt. Mat. 26 (2004) 117.Google Scholar
  44. 44.
    G. H. DIEKE and H. M. CROSSWHITE, Appl. Opt. 2 (1963) 675.Google Scholar
  45. 45.
    G. BLASSE and B. C. GRABMAIER, in “Luminescent Materials” (Springler-Verlag, Berlin, 1994) p. 44.Google Scholar
  46. 46.
    Idem., in ibid. p. 100.Google Scholar
  47. 47.
    D. J. ROBBINS, B. COCKAYNE, B. LENT and J. L. GLASPER, Solid State Commun. 36 (1980) 691.Google Scholar
  48. 48.
    D. ZAKARIA, PhD. Thesis, Université Blaise Pascal, Aubière, France (1991) p. 80.Google Scholar
  49. 49.
    P. CARO, E. ANTIC, L. BEARING, O. BEAURY, J. DEROUET, M. FAUCHER, C. GUTTEL, O. K. MOUNE and P. PORCHER, in Proceedings of the “Colloque International du CNRS”, Lyon, France, 1976 (Editions du CNRS, Paris, 1977) p. 71.Google Scholar
  50. 50.
    T. WELKER, J. Lumin. 48–49 (1991) 49.Google Scholar
  51. 51.
    J. P. VAN DER ZIEL, L. KOPF and L. G. VAN UITERT, Phys. Rev. B 6 (1972) 615.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • A. Potdevin
    • 1
  • G. Chadeyron
    • 1
    Email author
  • D. Boyer
    • 1
  • R. Mahiou
    • 1
  1. 1.Laboratoire des Matériaux InorganiquesUniversité Blaise Pascal and ENSCCFAubière CedexFrance

Personalised recommendations