Advertisement

Journal of Materials Science

, Volume 41, Issue 8, pp 2219–2228 | Cite as

Effect of processing parameters and clay volume fraction on the mechanical properties of epoxy-clay nanocomposites

  • S. C. Zunjarrao
  • R. Sriraman
  • R. P. SinghEmail author
Article

Abstract

The influence of processing parameters and particle volume fraction was experimentally studied for epoxy clay nanocomposites. Nanocomposites were prepared using onium ion surface modified montmorillonite (MMT) layered clay and epoxy resin (DEGBF). Two different techniques were used for dispersing the clay particles in the epoxy matrix, viz. high-speed shear dispersion and ultrasonic disruption. The volume fraction of clay particles was systematically varied from 0.5 to 6%, and mechanical properties, viz. flexural modulus and fracture toughness, were studied as a function of clay volume fraction and the processing technique. The flexural modulus was observed to increase monotonously with increase in volume fraction of clay particles, while, the fracture toughness showed an initial increase on addition of clay particles, but a subsequent decrease at higher clay volume fractions. In general, nanocomposites processed by shear mixing exhibited better mechanical properties as compared to those processed by ultrasonication. Investigation by X-ray diffraction (XRD) revealed exfoliated clay structure in most of the nanocomposites that were fabricated. Morphologies of the fracture surfaces of nanocomposites were studied using a scanning electron microscopy (SEM). Presence of river markings at low clay volume fractions provided evidence of extrinsic toughening taking place in an otherwise brittle epoxy.

Keywords

Clay Epoxy Fracture Toughness Montmorillonite Clay Particle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. VAIA and E. P. GIANNELIS, MRS Bull. 26 (2001) 394.Google Scholar
  2. 2.
    X. KORNMANN, L. A. BERGLUND, J. STERTE and E. P. GIANNELIS, Polym. Eng. Sci. 38 (1998) 1351.Google Scholar
  3. 3.
    E. P. GIANNELIS, Adv. Mater. 8 (1996) 29.Google Scholar
  4. 4.
    R. P. SINGH, M. ZHANG and D. CHAN, J. Mater. Sci. 37 (2002) 781.Google Scholar
  5. 5.
    S. C. ZUNJARRAO and R. P. SINGH, in Proceedings of the 2004 SEM X International Congress & Exposition on Experimental and Applied Mechanics, Costa Mesa, California USA, (Society for Experimental Mechanics, Inc., 2004) p. 375.Google Scholar
  6. 6.
    C. B. NG, L. S. SCHADLER and R. W. SIEGEL, Nanostruct. Mater. 12 (1999) 507.Google Scholar
  7. 7.
    A. ALLAOUI, S. BAI, H. M. CHENG and J. B. BAI, Compos. Sci. Technol. 62 (2002) 1993.Google Scholar
  8. 8.
    R. KRISHNAMOORTI and R. A. VAIA, in Proceedings of the 219th National Meeting of the American Chemical Society, Mar 26–30 2000, San Francisco, CA, United States, edited by R. A. Vaia (Oxford University Press, 2002) p. 225.Google Scholar
  9. 9.
    T. J. PINNAVAIA, T. LAN, Z. WANG, H. Z. SHI and P. D. KAVIRATNA, “Nanotechnology” (American Chemical Society, 1155 Sixteenth St NW, Washington, DC 20036, 1996).Google Scholar
  10. 10.
    Y. KOJIMA, A. USUKI, M. KAWASUMI, A. OKADA, Y. FUKUSHIMA, T. KURAUCHI and O. KAMIGAITO, J. Mater. Res. 8 (1993) 1185.Google Scholar
  11. 11.
    A. USUKI, Y. KOJIMA, M. KAWASUMI, A. OKADA, T. KURAUCHI and O. KAMIGAITO, in Proceedings of the Washington, DC Meeting 1990 of the ACS, Division of Polymer Chemistry, Aug 26–31 1990, Washington, DC, USA, (ACS, Washington, DC, USA, 1990) p. 651.Google Scholar
  12. 12.
    T. M. WU and J. Y. WU, J. Macromol. Sci., Phys. 41 B (2002) 17.Google Scholar
  13. 13.
    K. MASENELLI-VARLOT, E. REYNAUD, G. VIGIER and J. VARLET, J. Polym. Sci., Part B: Polym. Phys. 40 (2002) 272.CrossRefGoogle Scholar
  14. 14.
    T. J. PINNAVAIA, T. LAN, P. D. KAVIRATNA and M. S. WANG, in Proceedings of the 1994 MRS Spring Meeting, Apr 4–8, 1994, San Francisco, CA, USA, (Materials Research Society, Pittsburgh, PA, USA, 1994) p. 81.Google Scholar
  15. 15.
    T. AGAG, T. KOGA and T. TAKEICHI, Polymer 42 (2001) 3399.Google Scholar
  16. 16.
    M. O. ABDALLA, D. DEAN and S. CAMPBELL, in Proceedings of the Organic/Inorganic Hybrid Materials 2002, Apr 1–5 2002, San Francisco, CA, United States, (Materials Research Society, 2002) p. 179.Google Scholar
  17. 17.
    M. MEHRABZADEH, M. R. KAMAL and V. MOLLET, in Proceedings of the 61st Annual Technical Conference ANTEC 2003, May 4–8, 2003, Nashville, TN, United States, (Society of Plastics Engineers, 2003) p. 2260.Google Scholar
  18. 18.
    F. D. KUCHTA, P. J. LEMSTRA, A. KELLER, L. F. BATENBURG and H. R. FISCHER, in Proceedings of the Materials Research Society Symposium - 1999 MRS Spring Meeting - Symposium DD, ‘Organic/Inorganic Hybrid Materials’, Apr 5-Apr 9, 1999, San Francisco, CA, USA, (Materials Research Society, Warrendale, PA, USA, 1999) p. 363.Google Scholar
  19. 19.
    G. CHEN, X. CHEN, Z. LIN and W. YE, J. Mater. Sci. Lett. 18 (1999) 1761.CrossRefGoogle Scholar
  20. 20.
    G. J. JIANG and H. Y. TSAI, American Chemical Society, Polymer Preprints, Division of Polymer Chemistry, The San Francisco Meeting, Mar 26–Mar 31, 2000 41 (2000) 621.Google Scholar
  21. 21.
    M. PRAMANIK, B. K. SAMANTARAY, A. K. BHOWMICK and S. K. SRIVASTAVA, J. Polym. Sci., Part B: Polym. Phys. 40 (2002) 2065.Google Scholar
  22. 22.
    Y. TANG, Y. HU, J. WANG, R. ZONG, Z. GUI, Z. CHEN, Y. ZHUANG and W. FAN, J. Appl. Polym. Sci. 91 (2004) 2416.Google Scholar
  23. 23.
    M. ALEXANDRE and P. DUBOIS, Mater. Sci. Eng., R 28 (2000) 1.Google Scholar
  24. 24.
    O. BECKER, R. VARLEY and G. SIMON, Polymer 43 (2002) 4365.Google Scholar
  25. 25.
    D. RATNA, N. R. MANOJ, R. VARLEY, R. K. S. RAMAN and G. P. SIMON, Polym. Int. 52 (2003) 1403.Google Scholar
  26. 26.
    T. LAN and T. J. PINNAVAIA, Chem. Mater. 6 (1994) 2216.Google Scholar
  27. 27.
    X. KORNMANN, H. LINDBERG and L. A. BERGLUND, Polymer 42 (2001) 4493.CrossRefGoogle Scholar
  28. 28.
    Idem., ibid. 42 (2001) 1303.Google Scholar
  29. 29.
    S. ROY, H. LU, S. PERIASAMY and J. MA, in Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, VA, United States, (American Inst. Aeronautics and Astronautics Inc., 2003) p. 2761.Google Scholar
  30. 30.
    AMERICAN SOCIETY OF TESTING AND MATERIALS, “Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending”, Annual Book of ASTM standards, Designation: D6272-02, 2003.Google Scholar
  31. 31.
    Z. HASHIN and S. SHTRIKMAN, J. Mech. Phys. Solids 11 (1963) 127.CrossRefGoogle Scholar
  32. 32.
    A. N. NORRIS, Int. J. Solids Struct. 26 (1990) 663.Google Scholar
  33. 33.
    J. WANG and R. PYRZ, Compo. Sci. Tech. 64 (2004) 925.Google Scholar
  34. 34.
    Idem., ibid. 64 (2004) 935.Google Scholar
  35. 35.
    AMERICAN SOCIETY OF TESTING AND MATERIALS, “Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials”, Annual Book of ASTM Standards, Designation: D5045-99, 1999.Google Scholar
  36. 36.
    T. L. ANDERSON, “Fracture Mechanics: Fundamentals and Applications” (CRC Press, Boca Raton, FL, 1991).Google Scholar
  37. 37.
    A. YASMIN, J.L. ABOT, and I.M. DANIEL, Scripta Materialia 49 (2003) 81.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Mechanics of Advanced Materials Laboratory, Department of Mechanical EngineeringState University of New York at Stony BrookStony BrookUSA
  2. 2.John F Welch Technology CenterGE India Technology Center Pvt. Ltd.BangaloreIndia

Personalised recommendations