Advertisement

Journal of Materials Science

, Volume 41, Issue 8, pp 2259–2270 | Cite as

Investigation of high-temperature plastic deformation using instrumented microindentation tests. Part IThe deformation of three aluminum alloys at 473 K to 833 K

  • V. Bhakhri
  • R. J. Klassen
Article

Abstract

Constant-load indentation tests were performed on wrought-2024, P/M-2024, and wrought-1100 aluminum alloys to assess the capability of the microindentation testing technique for measuring the high-temperature deformation rate controlling parameters of these alloys. The three alloys all display threshold indentation stress σth below which the indentation strain rate εind approaches zero. The nominal inter-obstacle spacing, ℓ*, calculated from σth, increases with temperature in a way that is consistent with the known temperature dependence of the inter-particle spacing and dislocation cell size. The measured activation energy ΔGo of ɛind increases with temperature but remains within the range that is typical of deformation that occurs by dislocation glide limited by weak particles or dislocation/dislocation interactions. The three alloys tested show different trends of ΔGo versus ℓ* and the trends are consistent with the known temperature dependence of the obstacles to dislocation glide.

This study demonstrates that high-temperature indentation tests are sufficiently precise to detect changes in the operative deformation parameters between different alloys of the same general composition. This lays the groundwork for the use of this technique as a general tool for studying the local high-temperature deformation of a wide range of metal-based systems.

Keywords

Aluminum Alloy Indentation Test Operative Deformation Measured Activation Energy Indentation Strain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. POMEY, A. ROYEZ and J. P. GEORGES, Rev. Met. 56 (1959) 215.Google Scholar
  2. 2.
    T. O. MULHEARN and D. TABOR, J. Inst. Metals 89 (1960) 7.Google Scholar
  3. 3.
    A. G. ATKINS, A. SILVÉRIO and D. TABOR, J. Inst. Met. 94 (1966) 369.Google Scholar
  4. 4.
    C. J. FAIRBANKS, R. S. POLVANI, S. M. WEIDERHORN, B. J. HOCKEY and B. R. LAWN, J. Mater. Sci. Lett. 1 (1982) 391.CrossRefGoogle Scholar
  5. 5.
    P. M. SARGENT and M. F. ASHBY, Mater. Sci. Technol. 8 (1992) 594Google Scholar
  6. 6.
    W. B. LI, J. L. HENSHALL, R. M. HOOPER and K. E. EASTERLING, Acta Metall. Mater. 39 (1991) 3099.CrossRefGoogle Scholar
  7. 7.
    B. N. LUCAS and W. C. OLIVER, Metall. Mater. Trans. A 30 (1999) 601.CrossRefGoogle Scholar
  8. 8.
    M. J. MAYO and W. D. NIX, Acta Metall. 36 (1988) 2183.Google Scholar
  9. 9.
    T. P. WEIHS and J. B. PETHICA, Mater. Res. Soc. Symp. Proc. 239 (1992) 325.Google Scholar
  10. 10.
    V. RAMAN and R. BERRICHE, J. Mater. Res. 7 (1992) 627.Google Scholar
  11. 11.
    B. N. LUCAS and W. C. OLIVER, Mater. Res. Soc. Symp. Proc. 239 (1992) 337.Google Scholar
  12. 12.
    S. P. BAKER, T. W. BARBEE and W. D. NIX, Mater. Res. Soc. Symp. Proc. 239 (1992) 319.Google Scholar
  13. 13.
    G. FENG and A. H. W. NGAN, Scripta Mater. 45 (2001) 971.Google Scholar
  14. 14.
    H. J. FROST and M. F. ASHBY, “Deformation-Mechanism Maps” (Pergamon Press, Oxford, 1982) p.21.Google Scholar
  15. 15.
    S. SAIMOTO, B. J. DIAK and K. R. UPADHYAYA, Mater. Sci. Engng. A234 – 236 (1997) 1015.Google Scholar
  16. 16.
    B. J. DK and S. SAIMOTO, Mater. Sci. Engng. A319 – 321 (2001) 909.Google Scholar
  17. 17.
    A. A. ELMUSTAFA and D. S. STONE, J. Mech. Phys. Solids 51 (2003) 357.CrossRefGoogle Scholar
  18. 18.
    R. J. KLASSEN, B. J. DIAK and S. SAIMOTO, Mater. Sci. Engng. A387 - 389 (2004) 297.Google Scholar
  19. 19.
    R. N. SARAF, M.E. Sc “Creep Behaviour of Al-Based Composites Made By The P/M Technique” Thesis University of Western Ontario, London Canada, 2002.Google Scholar
  20. 20.
    J. F. SMITH and S. ZHANG, Surf. Engng. 16 (2000) 143.Google Scholar
  21. 21.
    B. D. BEAKE and J. F. SMITH, Philos. Mag. A8 (2002) 2179.Google Scholar
  22. 22.
    B. D. BEAKE, S. R. GOODES, J. F. SMITH and Z. METALLKD 7 (2003) 798.CrossRefGoogle Scholar
  23. 23.
    J. C. GIBELING and W. D. NIX, Mater. Sci. Engng. 45 (1980) 123.CrossRefGoogle Scholar
  24. 24.
    F. A. MOHAMED, Mater. Sci. Engng. A245 (1998) 242.Google Scholar
  25. 25.
    S. R. NUTT and R. W. CARPENTER, Mater. Sci. Eng. 75 (1985) 169.CrossRefGoogle Scholar
  26. 26.
    M. STRANGWOOD, C. A. HIPPSLEY and J. J. LEWANDOWSKI, Scripta Metal. et Mater. 24 (1990) 1483.Google Scholar
  27. 27.
    W.-J. KIM and O. D. SHERBY, Acta Mater. 48 (2000) 1763.Google Scholar
  28. 28.
    W.-J. KIM, D.-W. KUM and H.-G. JEONG, J. Mater. Res. 16 (2001) 2429.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • V. Bhakhri
    • 1
  • R. J. Klassen
    • 1
  1. 1.Department of Mechanical and Materials Engineering, Faculty of EngineeringUniversity of Western OntarioLondonCanada

Personalised recommendations