Journal of Materials Science

, Volume 41, Issue 8, pp 2281–2289 | Cite as

Method of sensing impact damage in carbon fiber polymer-matrix composite by electrical resistance measurement

  • Shoukai Wang
  • Daojun Wang
  • D. D. L. ChungEmail author
  • Jaycee H. Chung


The method of sensing impact damage in carbon fiber polymer-matrix structural composite by DC electrical resistance measurement was evaluated by measuring the resistance of the top surface (surface receiving impact). The resistance obtained by using the four-probe method is a more sensitive, more precise (less data scatter) and more accurate indicator of composite damage than that obtained by using the two-probe method. The data scatter is low for both four-probe and two-probe resistances for impact energy up to 5 J, but it is lower for the four-probe resistance than the two-probe resistance. The data scatter increases with damage. It is attributed to electrical contact degradation. The four-probe resistance of the 8-lamina composite increases upon impact, such that the fractional increase diminishes as the distance from the point of impact increases. The four-probe resistance of the 24-lamina composite increases upon impact for the specimen segment containing the point of impact, but decreases slightly upon impact for the segments within about 20 mm from the point of impact. The two-probe resistance has less tendency to decrease upon impact than the four-probe resistance.


Carbon Fiber Electrical Resistance Measurement Impact Energy Electrical Contact Fractional Increase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. TENNYSON and C. G. LAMONTAGNE, in Impact Behaviour of Fibre-Reinforced Composite Materials and Structures, edited by S.R. Reid and G. Zhou (Woodhead Publishing, Cambridge, UK, 2000) p. 280.Google Scholar
  2. 2.
    W. ANK DE MORAIS, J. R. MORAES D’ALMEIDA and L. BARBOSA GODEFROID, in Congresso Annual — Associacao Brasileira de Metalurgia e Materiais (1998), Volume Date 1997, 52nd (Il Congresso Internacional de Tecnologia Metalurgica e de Materiais), p. 3880.Google Scholar
  3. 3.
    S. A. MATEMILOLA and W. J. STRONGE, J. Press. Vess.-T. ASME 119(4) (1997) 435.CrossRefGoogle Scholar
  4. 4.
    N. K. NAIK, Y. C. SEKHER and S. MEDURI, J. Reinf. Plast. Comp. 19(12) (2000) 912.CrossRefGoogle Scholar
  5. 5.
    X.-S. YI and X. F. AN, J. Mater. Sci. 39(9) (2004) 3253.Google Scholar
  6. 6.
    J. F. HARPER and R. A. AZIZ, Key Eng. Mat. 221/222(Experimental Techniques and Design in Composite Materials 5) (2002) 173.Google Scholar
  7. 7.
    M. V. HOSUR, C. R. L. MURTHY and T. S. RAMAMURTHY, in Proc.—13th ASC Technical Conference on Composite Materials (1998) p. 753.Google Scholar
  8. 8.
    S. MOTAHHARI, Y. CAO and J. CAMERON, Polym. Polym. Compos. 8(7) (2000) 449.Google Scholar
  9. 9.
    L. C. MASSON and P. E. IRVING, Proc. SPIE - The International Society for Optical Engineering 4073(Smart Structures and Materials) (2000) 182.Google Scholar
  10. 10.
    N. ANGELIDIS, N. KHEMIRI and P. E. IRVING, Smart Mater. Struct. 14 (2005) 147.Google Scholar
  11. 11.
    S. WANG, D. D. L. CHUNG and J. H. CHUNG, Compos. Part A - Appl. S., 36 (2005) 1707.Google Scholar
  12. 12.
    M.-S. SOHN, X.-Z. HU and J.-K. KIM, Polym. Polym. Compos. 9(3) (2001) 157.Google Scholar
  13. 13.
    K. MINNAAR, J. ZHAI, S. W. PARK and M. ZHOU, in Proc. United States - Japan Conf. on Composite Materials, 9th, (2000) p. 461.Google Scholar
  14. 14.
    S. KITADE, T. FUKUDA, K. OSAKA and A. HAMAMOTO, US — Japan Workshop on Smart Materials and Structures, 1st (1996) p. 283.Google Scholar
  15. 15.
    S. WANG, D. D. L. CHUNG and J. H. CHUNG, J. Mater. Sci. 40(2) (2005) 561.Google Scholar
  16. 16.
    D. D. L. CHUNG and S. WANG, Polym. Polym. Compos. 11(7) (2003) 515.Google Scholar
  17. 17.
    S. WANG and D. D. L. CHUNG, Compos. Interf. 9(1) (2002) 51.Google Scholar
  18. 18.
    Idem., Compos. Part B - Eng. 29B(1) (1998) 63.Google Scholar
  19. 19.
    Idem., Polym. Comp. 18(6) (1997) 692.Google Scholar
  20. 20.
    Idem., Polym. Polym. Compos. 9(2) (2001) 135.Google Scholar
  21. 21.
    A. TODOROKI and J. YOSHIDA, JSME Int. J. A 47(3) (2004) 357.Google Scholar
  22. 22.
    N. ANGELIDIS, C. Y. WEI and P. E. IRVING, Compos. Part A -Appl. S. 35 (2004) 1135.Google Scholar
  23. 23.
    S. WANG and D. D. L. CHUNG, Polym. Comp. 21(1) (2000) 13.Google Scholar
  24. 24.
    S. WANG, D. D. L. CHUNG and J. H. CHUNG, unpublished result.Google Scholar
  25. 25.
    S. WANG, D. P. KOWALIK and D. D. L. CHUNG, Smart Mater. Struct. 13(3) (2004) 570.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Shoukai Wang
    • 1
  • Daojun Wang
    • 1
  • D. D. L. Chung
    • 1
    Email author
  • Jaycee H. Chung
    • 2
  1. 1.Composite Materials Research Laboratory, University at BuffaloState University of New YorkBuffaloUSA
  2. 2.Global Contour Ltd.Rockwall

Personalised recommendations