Advertisement

Journal of Materials Science

, Volume 41, Issue 8, pp 2301–2307 | Cite as

Study of the austenite quantification by X-ray diffraction in the 18Ni-Co-Mo-Ti maraging 300 steel

  • J. M. Pardal
  • S. S. M. TavaresEmail author
  • M. P. Cindra Fonseca
  • H. F. G. Abreu
  • J. J. M. Silva
Article

Abstract

In this paper, quantifications of the austenitic phase in a maraging 300 steel heat treated at different temperatures and periods of time were carried out using the direct comparison method by X-ray diffraction. The influence of taking into account the chemical compositions of austenite and martensite phases in the results by the direct comparison method was evaluated. In order to analyze the instability of austenite under plastic deformation, the quantifications were carried out with and without previous grinding of the samples. The behavior of the austenite volume fraction against aging time at 560°C, 600°C and 650°C were determined. The variation of the martensite lattice parameter with aging time was also analyzed. The results show an increase of the austenite content with aging time at 560°C and 600°C. At 650°C, however, the austenite content present at room temperature decreases and the martensite parameter increases with the aging time above 1 h.

Keywords

Polymer Austenite Martensite Plastic Deformation Aging Time 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. MAGNÉE, J. M. DRAPIER, J. DUMONT, D. COUTSOURADIS and L. HABRAKEN, “Cobalt Containing High Strength Steels” (Centre d’Information du Cobalt, Brussels, 1974) p. 128.Google Scholar
  2. 2.
    J.B. LECOMTE, C. SERVANT and G. CIZERON, J. Mater. Sci. 20 (1985) 3339.CrossRefGoogle Scholar
  3. 3.
    R. TEWARI, S. MAZUMDER, I. S. BATRA, G. K. DEY and S. BANERJEE, Acta Mater. 48 (2000) 1187.Google Scholar
  4. 4.
    D. T. PETERS, “Elements of X-ray diffraction” 514p, Trans. ASM 61 (1968) 62.Google Scholar
  5. 5.
    XIAODONG LI and ZHONGDA YIN, Mater. Letter 24 (1995) 239.CrossRefGoogle Scholar
  6. 6.
    N. ATSMON and A. ROSEN, Metall. 14 (1981) 163.Google Scholar
  7. 7.
    S. V. GLADKOVSKII, YU. V. KALETINA, A. M. FILIPPOV, A. YU. KALETIN, V. M. SCHASTLIVTSEV, E.A. ISHINA and I. N. VESELOV, The Phys. Met. Metall 87 (3) (1999) 253.Google Scholar
  8. 8.
    S. S. M. TAVARES, M. R. DA SILVA, J. M. NETO, J. M. PARDAL, M. P. CINDRA FONSECA and H. G. F. ABREU, J. Alloys Comp. 373 (2004) 304.Google Scholar
  9. 9.
    M. AHMED, A. ALI, S. K. HASNAIN, H. HASHMI and A. Q. KHAN, Acta Metall. Mater. 42(3) (1994) 631.Google Scholar
  10. 10.
    P. P. SINHA, D. SIVAKUMAR, N. S. BABU, K. T. THARIAN and A. NATARAJAN, Steel Research 66 (11) (1995) 490.Google Scholar
  11. 11.
    W. SHA, A. CEREZO and G. D. W. SMITH, Metall. Trans. 24 A (1993) 1221.Google Scholar
  12. 12.
    M. AHMED, K. HASNAIN, I. NASIM and H. AYUB, Metall. Mater. Trans. 26A (1995) 1869.Google Scholar
  13. 13.
    M. NAIM and S. BAHADUR, Wear Mat. 112 (1986) 217.Google Scholar
  14. 14.
    B. D. CULLITY, (Addison-Wesley Publishing Company, Massachusetts, USA, 1956).Google Scholar
  15. 15.
    M. FAROOQ, H. AYUB, A. UL HAQ and A. Q. KHAN, Metall. 20 (1987) 377.Google Scholar
  16. 16.
    F. HABIBY, T. N SIDDIQUI, H. HUSSAIN, A. UL HAQ and A. Q. KHAN, J. Mat. Sci. 31 (1996) 305.Google Scholar
  17. 17.
    L. ZHAO, N. H. VAN DIJK, E. BRÜCK, J. SIETSMA and S. VAN DER ZWAAG, Mater. Sci. Eng. A313 (2001) 145.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • J. M. Pardal
    • 1
  • S. S. M. Tavares
    • 1
    Email author
  • M. P. Cindra Fonseca
    • 1
  • H. F. G. Abreu
    • 2
  • J. J. M. Silva
    • 2
  1. 1.Departamento de Engenharia MecânicaPGMEC UFFNiterói-RJBrazil
  2. 2.Departamento de Engenharia Mecânica UFCFortalezaBrazil

Personalised recommendations