Journal of Materials Science

, Volume 41, Issue 8, pp 2319–2325 | Cite as

Thermal evolution of ZnO-Bi2O3-Sb2O3 system in the region of interest for varistors

  • M. PeiteadoEmail author
  • M. A. De La Rubia
  • J. F. Fernández
  • A. C. Caballero


In facing the design of new processing strategies for ZnO based ceramic varistors, a precise control of its microstructural development during sintering is demanded. Addition of dopants to zinc oxide results in the formation of secondary phases that to a large extent determine the macroscopic electrical properties of the ceramic. In a varistor system based on ZnO with small additions of Bi2O3 and Sb2O3 these three oxides govern the reactions at high temperature that give place to the secondary phases. These reactions become then the head point from which the functional microstructure is configured. In this way the present work deals with the thermal evolution of the ZnO-Bi2O3-Sb2O3 system in the region of interest for varistors, revealing the existence of two simultaneous reactions paths during sintering these ceramics.


Microstructure Zinc Electrical Property Microstructural Development Bi2O3 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. MATSUOKA, Jpn. J. Appl. Phys. 10 (1971) 736.Google Scholar
  2. 2.
    T. K. GUPTA, J. Am. Ceram. Soc. 73 (1990) 1817.CrossRefGoogle Scholar
  3. 3.
    D. R. CLARKE, J. Am. Ceram. Soc. 82 (1999) 485.CrossRefGoogle Scholar
  4. 4.
    M. INADA, Jpn. J. Appl. Phys. 17 (1978) 673.Google Scholar
  5. 5.
    E. OLSSON, G. DUNLOP and R. ÖSTERLUND, J. Am. Ceram. Soc. 76 (1993) 65.CrossRefGoogle Scholar
  6. 6.
    M. PEITEADO, Bol. Soc. Esp. Ceram. V. 44 (2005) 77.Google Scholar
  7. 7.
    S. TANAKA, C. AKITA, N. OHASHI, J. KAWAI, H. HANEDA and J. TANAKA, J. Solid State Chem. 105 (1993) 36.Google Scholar
  8. 8.
    K. O. MAGNUSSON and S. WIKLUND, J. Appl. Phys. 76 (1994) 7405.CrossRefGoogle Scholar
  9. 9.
    F. GREUTER, Solid State Ionics 75 (1995) 67.Google Scholar
  10. 10.
    E. OLSSON, G. L. DUNLOP and R. ÖSTERLUND, J. Appl. Phys. 66 (1989) 5072.CrossRefGoogle Scholar
  11. 11.
    M. A. DE LA RUBIA, M. PEITEADO, J. F. FERNÁNDEZ and A. C. CABALLERO, J. Eur. Ceram. Soc. 24 (2004) 1209.CrossRefGoogle Scholar
  12. 12.
    L. HOZER in “Semiconductor Ceramics: Grain Boundary Effects” (Polish Scientific Publishers, Warszawa, Poland, 1994) p. 44.Google Scholar
  13. 13.
    J. WONG, J. Appl. Phys. 46 (1975) 1653.CrossRefGoogle Scholar
  14. 14.
    M. INADA, Jpn. J. Appl. Phys. 19 (1980) 409.Google Scholar
  15. 15.
    J. KIM, T. KIMURA and T. YAMAGUCHI, J. Am. Ceram. Soc. 72 (1989) 1390.CrossRefGoogle Scholar
  16. 16.
    A. MERGEN and W. E. LEE, J. Eur. Ceram. Soc. 17 (1997) 1049.Google Scholar
  17. 17.
    J. P. GUHA, S. KUNEJ and D. SUVOROV, J. Mater. Sci. 39 (2004) 911.Google Scholar
  18. 18.
    J. KIM, T. KIMURA and T. YAMAGUCHI, J. Mater. Sci. 24 (1989) 213.Google Scholar
  19. 19.
    E. R. LEITE, M. A. L. NOBRE, E. LONGO and J. A. VARELA, J. Mater. Sci. 31, (1996) 5391.CrossRefGoogle Scholar
  20. 20.
    V. KRASEVEC, M. TRONTELJ and L GOLIC, J. Am. Ceram. Soc, 74 (1991) 760.CrossRefGoogle Scholar
  21. 21.
    J. OTT, A. LORENZ, M. HARRER, E. A. PREISSNER, C. HESSE, A. FELTZ, A. H. WHITEHEAD and M. SCHREIBER, J. Elecroceram 6 (2001), 135.Google Scholar
  22. 22.
    K. G. V. KUMARI, P. D. VASU, V. KUMAR and T. ASOKAN, J. Am. Ceram. Soc. 85 (2002) 703.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • M. Peiteado
    • 1
    Email author
  • M. A. De La Rubia
    • 1
  • J. F. Fernández
    • 1
  • A. C. Caballero
    • 1
  1. 1.Departamento de ElectrocerámicaInstituto de Cerámica y Vidrio, CSICMadridSpain

Personalised recommendations