Skip to main content
Log in

Effect of acrylic copolymer and terpolymer composition on the properties of in-situ polymer/silica hybrid nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Acrylic copolymer- and 5% acrylic acid (AA) modified terpolymer-silica hybrid nanocomposites were synthesized by free radical bulk polymerization of ethyl acrylate (EA), butyl acrylate (BA) and acrylic acid (AA) with simultaneous generation of silica from tetraethoxysilane by sol-gel reaction. The pure polymers were analyzed by using Fourier Transform infrared (FTIR) spectroscopy and solid state nuclear magnetic resonance (NMR) spectroscopy. The hybrid samples were characterized by scanning electron microscopy (SEM), FTIR spectroscopy, NMR spectroscopy, dynamic mechanical, mechanical and thermal properties. SEM images confirmed the presence of nanosilica particles within the polymer matrices, whose dispersion and particle size distribution and visual appearance were dependent on the relative polarity (hydrophilicity) of the polymer matrices and the concentration of the filler. There was no evidence of strong chemical interaction between the polymers and the dispersed silica phase, as confirmed from the FTIR results. Terpolymer-silica hybrids demonstrated superior mechanical properties compared to the copolymer-silica hybrids. They also showed higher dynamic storage modulus and positive shift in the loss tangent peaks. The thermal stability of the nanocomposites was marginally higher which was possibly due to the dipolar interaction at the organic-inorganic interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. OKADA and A. USUKI, Mater. Sci. Eng. 3 (1995) 109.

    Article  Google Scholar 

  2. A. BANDYOPADHYAY, A. K. BHOWMICK and M. D. SARKAR, J. Appl. Polym. Sci. 93 (2004) 2579.

    Article  CAS  Google Scholar 

  3. P. JEDRZEJOWSKI, J. E. KLEMBERG-SAPIEHA and L. MARTINU, Surf. Coati. Tech. 188–189 (2004) 371.

    Article  CAS  Google Scholar 

  4. J. W. GILMAN, Appl. Clay Sci. 15 (1999) 31.

    Article  CAS  Google Scholar 

  5. P. B. MESSERSMITH and E. P. GIANNELIS, J. Polym. Sci. Part A: Polym. Chem. 33 (1995) 1047.

    Article  CAS  Google Scholar 

  6. W. CHEN, Q. XU and R. Z. YUAN, Comp. Sci. Tech. 61 (2001) 935.

    Article  CAS  Google Scholar 

  7. D. Y. GODOVSKI, Adv. Polym. Sci., 119 (1995) 79.

    Article  CAS  Google Scholar 

  8. A . BANDYOPADHYAY, M. D. SARKAR and A. K. BHOWMICK, J. Appl. Polym. Sci. 95 (2005) 1418.

    Article  CAS  Google Scholar 

  9. Idem., Rubber Chem. Technol. 77 (2004) 830.

    CAS  Google Scholar 

  10. M. MAITY, S. SADHU and A. K. BHOWMICK, J Polym Sci. Part B: Polym. Phy. 42 (2004) 4489.

    Article  CAS  Google Scholar 

  11. S. SADHU and A. K. BHOWMICK, Adv. Engg. Mater, 6 (2004) 738.

    Article  CAS  Google Scholar 

  12. Idem., J. Polym Sci. Part B: Polym. Phy. 42 (2004) 1573.

    Article  CAS  Google Scholar 

  13. Idem., Rubber Chem. Technol. 76 (2003) 860.

    CAS  Google Scholar 

  14. L. XILONG, S. ZHOU, L. WU, B. WANG and L. YANG, Polymer 45 (2001) 860.

    Google Scholar 

  15. B. K. COLTRAIN, C. J. T. LANDRY, J. M. O ’REILLY, A. M. CHAMBERLAIN, G. A. RAKES, J. S. SEDITA, L. W. KELTS, M. R. LANDRY and V. K. LONG, Chem. Mater. 5 (1993) 1445.

    Article  CAS  Google Scholar 

  16. C. C. SUN and J. E. MARK, Polymer 30 (1989) 104.

    Article  CAS  Google Scholar 

  17. Z. AHMAD, M. I. SARWAR and J. E. MARK, J. Mater. Chem. 7 (1997) 259.

    Article  CAS  Google Scholar 

  18. G. S. SUR and J. E. MARK, Eur. Polym. J. 21 (1985) 1051.

    Article  CAS  Google Scholar 

  19. B. SMARSLY, G. GARNWEITNER, R. ASSINK and C. J. BRINKER, Prog. Org. Coatings 47 (2002) 393.

    Article  CAS  Google Scholar 

  20. G. KICKELBICK, Prog. Polym. Sci. 28 (2003) 83.

    Article  CAS  Google Scholar 

  21. Y. P. WANG, X. W. PEI, X. Y. HE and K. YUAN, Euro. Polym. J. 41 (2005) 1326.

    Article  CAS  Google Scholar 

  22. C. L. JACKSON, B. J . BAUER, A. I. NAKATANI and J. D. BARNES, Chem. Mater. 8 (1996) 727.

    Article  CAS  Google Scholar 

  23. P. HAJJI, L. DAVID, J. F. GERAND and G. VIGIER, J. Polym. Sci. Part B: Polym. Phy. 37 (1999) 3172.

    Article  CAS  Google Scholar 

  24. R. TAMAKI and Y. J. CHUJO, Mater. Chem. 8 (1998) 1113.

    Article  CAS  Google Scholar 

  25. G . SOCRATES, Infrared Characteristic Group Frequencies, John Wiley (New York 1980).

  26. S. D. L. MARTINO and M. KELCHTERMANS, J. Appl. Polym. Sci. 56 (1995) 1781.

    Article  CAS  Google Scholar 

  27. S. PATEL, A. BANDYOPADHYAY, V. VIJAYABASKAR, A. K. BHOWMICK, Polymer 46 (2005) 8079.

    Google Scholar 

  28. W. W. SIMONS “The Sadtler Guide to Carbon -13 NMR Spectra,” Sadtler Research Laboratories, 1983.

  29. A. K. BHOWMICK, Invited Lecture, International Workshop on Polymer Nanocomposites: Recent Developments and Applications, Melbourne, Australia, May 23–25, 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Bhowmick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S., Bandyopadhyay, A., Vijayabaskar, V. et al. Effect of acrylic copolymer and terpolymer composition on the properties of in-situ polymer/silica hybrid nanocomposites. J Mater Sci 41, 927–936 (2006). https://doi.org/10.1007/s10853-006-6576-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-6576-x

Keywords

Navigation