Advertisement

Soluble axially substituted phthalocyanines: Synthesis and nonlinear optical response

  • Yu ChenEmail author
  • Michael Hanack
  • Werner J. Blau
  • Danilo Dini
  • Ying Liu
  • Ying Lin
  • Jinrui Bai
Review

Abstract

This review lays special stress on describing the synthesis of soluble axially substituted or bridged indium, gallium and titanium phthalocyanine complexes and their electronic absorption characteristics, photophysical and nonlinear optical properties. The enhanced solubility of the axially substituted or bridged phthalocyanine monomers and dimers, compared to the chloro analogues, shows that the usual tendency of phthalocyanines to form aggregates can be effectively suppressed by axial substitution. Axial substitution in phthalocyanine complexes has provoked relevant changes on the electronic structure of the molecule by altering the π-electronic distribution due to the dipole moment of the central metal-axial ligand bond. The nanosecond nonlinear absorption and the optical limiting of indium, gallium and titanium phthalocyanines seem to be dominated by a strong triplet state absorption in the optical region comprised between the Q- and B-bands in their UV/Vis absorption spectra.

Graphical Abstract

A series of highly soluble axially substituted and bridged phthalocyanine and naphthalocyanine complexes have been synthesized. Axial substitution in phthalocyanine complexes has provoked relevant changes on the electronic structure of the molecule by altering the π-electronic distribution due to the dipole moment of the central metal-axial ligand bond. Open image in new window

Keywords

Dipole Moment Gallium Chloro Phthalocyanine Triplet State 

References

  1. 1.
    J. ZYSS, in “Nonlinear Optics: Materials, Physics and Devices” (Academic Press, Boston, 1993).Google Scholar
  2. 2.
    H. S. NALWA and S. MIYATA, “Nonlinear optics of organic molecules and polymers” (CRC Press, Boca Raton, FL, 1997).CrossRefGoogle Scholar
  3. 3.
    N. B. MCKEOWN, in “Phthalocyanine Materials: Synthesis, Structure and Function,” edited by B. Dunn, J. W. Goodby and A. R. West (Cambridge University Press, 1998).Google Scholar
  4. 4.
    H. S. NALWA and J. S. SHIRK, in “Phthalocyanines: Properties and Applications,” edited by C. C. Leznoff and A. B. P. Lever (VCH Publishers, Inc., New York, 1996) Vol. 4, p. 79.Google Scholar
  5. 5.
    M. J. STILLMAN and T. NYOKONG, in “Phthalocyanines: Properties and Applications,” edited by C. C. Leznoff and A. B. P. Lever (VCH Publishers, Inc., New York, 1989) Vol. 1, p. 133.Google Scholar
  6. 6.
    B. F. LEVINE and C. G. BETHEA, Appl. Phys. Lett. 24 (1974) 445.CrossRefGoogle Scholar
  7. 7.
    (a) E. W. VAN STRYLAND, M. SHEIK-BAHAE, A. A. SAID and D. J. HAGAN, Prog. Cryst. Growth Charact. 27 (1993) 279; M. SHEIK-BAHAE, A. A. SAID, T. H. WEI and E. W. VAN STRYLAND, IEEE J. Quant. Electr. QE-26 (1990) 760.Google Scholar
  8. 8.
    (a) F. KAJZAR, J. MESSIER and C. ROSILIO, J. Appl. Phys. 60 (1986) 3040; (b) G. R. MEREDITH, B. BUCHALTER and C. HANZLIK, J. Chem. Phys. 78 (1983) 1533.Google Scholar
  9. 9.
    J. F. REINTJES, in “Nonlinear Optical Parametric Processes in Liquids and Gases“ (Academic Press, New York, 1984) p. 327; R. C. LIND, D. G. STEEL and G. J. DUNNING, Opt. Eng. 21 (1982) 190; (c) A. YARIV, IEEE J. Quant. Electr. QE-14 (1978) 650.CrossRefGoogle Scholar
  10. 10.
    A. W. SNOW, J. S. SHIRK and L. H. PEEBLES Jr., in Proceedings of the International Conference on Porphyrins and Phthalocyanines-Symposium Lectures, DiJon, France, June 25–30, 2000, p. 177.Google Scholar
  11. 11.
    J. S. SHIRK, R. G. S. PONG, S. R. FLOM, H. HECKMANN and M. HANACK, J. Phys. Chem. A 104 (2000) 1438.CrossRefGoogle Scholar
  12. 12.
    M. HANACK, T. SCHNEIDER, M. BARTHEL, J. S. SHIRK, S. R. FLOM and R. G. S. PONG, Coord. Chem. Rev. 219/221 (2001) 235.CrossRefGoogle Scholar
  13. 13.
    J. W. PERRY, K. MANSOUR, I. Y. S. LEE, X. L. WU, P. V. BEDWORTH, C. T. CHEN, D. NG, S. R. MARDER, P. MILES, T. WADA, M. TIAN and H. SASABE, Science 273 (1996) 1533.CrossRefGoogle Scholar
  14. 14.
    Y. CHEN, M. FUJITSUKA, S. M. O’FLAHERTY, M. HANACK, O. ITO and W. J. BLAU, Adv. Mater. 15 (2003) 899.CrossRefGoogle Scholar
  15. 15.
    (a) Y. CHEN, S. O’FLAHERTY, M. FUJITSUKA, M. HANACK, L. R. SUBRAMANIAN, O. ITO and W. J. BLAU, Chem. Mater. 14 (2002) 5163; S. M. O’FLAHERTY, S. V. HOLD, Y. CHEN, M. HANACK and W. J. BLAU, in Proceedings of SPIE- Organic Photonic Materials and Devices V, edited by J. G. Grote, T. Kaino, 4991 (2003) p. 183.Google Scholar
  16. 16.
    (a) G. DE LA TORRE, P. VAZQUEZ, F. AGULLO-LOPEZ, and T. TORRES, Chem. Rev. 104 (2004) 3723; (b) G. DE LA TORRE, P. VAZQUEZ, F. AGULLO-LOPEZ and T. TORRES, J. Mater. Chem. 8 (1998) 1671; M. CALVETE, G. Y. YANG and M. HANACK, Synth. Met. 141 (2004) 231; C. G. CLAESSENS, W. J. BLAU, M. COOK, M. HANACK, R. J. M. NOLTE, T. TORRES and D. TORRES, Monat. Chem. 132 (2001) 3.Google Scholar
  17. 17.
    (a) M. HANACK, H. HECKMANN and R. POLLEY, in “Methods of Organic Chemistry(Houben-Weyl)“, 4th Ed., edited by E. Schaumann, (Thieme, Stuttgart, New York 1997) Vol. E9d, pp. 717; (b) C. C. LEZNOFF, in Phthalocyanines: Properties and Applications, edited by C. C. Leznoff, A. B. P. Lever (VCH Publishers, Inc., New York 1989) Vol. 1, p.1; (c) M. HANACK AND M. LANG, Adv. Mater. 6 (1994) 819.Google Scholar
  18. 18.
    M. SOMMERAUER, C. RAGER and M. HANACK, J. Am. Chem. Soc. 118 (1996) 10085.CrossRefGoogle Scholar
  19. 19.
    M. J. STILLMAN and A. J. THOMSON, J. Chem. Soc. Faraday Trans.2. 70 (1974) 790.CrossRefGoogle Scholar
  20. 20.
    (a) R. D. GEORGE, A. W. SNOW, J. S. SHIRK, W. R. BARGER and J. PORPH, Phthal 2 (1998) 1; (b) B. R. HOLLEBONE and M. J. STILLMAN, J. Chem. Soc., Faraday Trans.2. 74 (1978) 2107; (c) E. S. DODSWORTH, A. B. P. LEVER, P. SEYMOUR and C. C. LEZNOFF, J. Phys. Chem. 89 (1985) 5698; (d) W. J. SCHUTTE, M. SLUYTERS-REHBACH and J. H. SLUYTERS, J. Phys. Chem. 97 (1993) 6069.Google Scholar
  21. 21.
    S. A. MIKHALENKO, S. V. BARKANOVA, O. L. LEBEDEV and E. A. LUK’YANETS, Zh. Obshch. Khim. 41 (1971) 2735; J. GEN, Chem. USSR 41 (1971) 2770.Google Scholar
  22. 22.
    M. HANACK, J. METZ and G. PAWLOWSKI, Chem. Ber. 115 (1982) 2836.CrossRefGoogle Scholar
  23. 23.
    H. HECKMANN, Ph.D. Thesis, University of Tübingen, Germany (1999).Google Scholar
  24. 24.
    G. SCHMID, E. WITKE, U. SCHLICK, S. KNECHT and M. HANACK, J. Mater. Chem. 5 (1995) 855.CrossRefGoogle Scholar
  25. 25.
    J. P. LINSKY, T. R. PAUL, R. S. NOHR and M. E. KENNEY, Inorg. Chem. 19 (1980) 3131.CrossRefGoogle Scholar
  26. 26.
    M. HANACK and H. HECKMANN, Eur. J. Inorg. Chem. (1998) 367.Google Scholar
  27. 27.
    G. ROJO, G. MARTIN, F. AGULLO-LOPEZ, T. TORRES, H. HECKMANN and M. HANACK, J. Phys. Chem. B 104 (2000) 7066.CrossRefGoogle Scholar
  28. 28.
    T. SCHNEIDER, H. HECKMANN, M. BARTHEL and M. HANACK, Eur. J. Org. Chem. (2001) 3055.Google Scholar
  29. 29.
    (a) E. I. KOVSHEV, V. A. PUCHNOVA, and E. A. LUK’YANETS, Zh. Org. Khim. 7 (1971) 369, J. Org. Chem. USSR. 7 (1971) 364; (b) R. POLLEY and M. HANACK, J. Org. Chem. 60 (1995) 8278; (c) M. KATAYOSE, S.TAI, K. KAMIJIMA, H. HAGIWARA and N. HAYASHI, J. Chem. Soc., Perkin Trans. 2 (1992) 403; (d) K. KITAHARA, T.ASANO, K. HAMANO, S. TOKITA and H. NISHI, J. Heterocyclic Chem., 27 (1990) 2219; (e) M. J. COOK, A. J. DUNN, S. D. HOWE, A. J. THOMSON and K. J. HARRISON, J. Chem. Soc., Perkin Trans I, (1988) 2453; (f)G. I. GONCHAROVA, M. G. GAL’PERN, E. A. LUK’YANETS, Zh. Obshch. Khim. 52 (1982) 666, J. Gen. Chem. USSR 52 (1982) 581.Google Scholar
  30. 30.
    Z. Z. HO, C. Y. JU, and W. M. HETHERINGTON III, J. Appl. Phys. 62 (1987) 716.CrossRefGoogle Scholar
  31. 31.
    Y. CHEN, L. R. SUBRAMANIAN, M. BARTHEL and M. HANACK, Eur. J. Inorg. Chem. (2002) 1032.Google Scholar
  32. 32.
    Y. CHEN, S. M. O’FLAHERTY, M. HANACK and W. J. BLAU, J. Mater. Chem. 13 (2003) 2405.CrossRefGoogle Scholar
  33. 33.
    S. HUGHES, G. SPRUCE, B. S. WHERRETT and T. KOBAYASHI, J. App. Phys., 81 (1997) 5905.CrossRefGoogle Scholar
  34. 34.
    (a) G. WINTER, H. HECKMANN, P. HAISCH, W. EBERHARDT, M. HANACK, L. LÜER, H. J. EGELHAAF and D. OELKRUG, J. Am. Chem. Soc. 120 (1998) 11663; P. HAISCH, G. WINTER, M. HANACK, L. LÜER, H. J. EGELHAAF and D. OELKRUG, Adv. Mater. 9 (1997) 316.Google Scholar
  35. 35.
    F. HENARI, A. DAWEY, W. BLAU, P. HAISCH and M. HANACK, J. Porph. Phthal. 3 (1999) 331.CrossRefGoogle Scholar
  36. 36.
    M. BARTHEL and M. HANACK, J. Porph. Phthal. 4 (2000) 635.CrossRefGoogle Scholar
  37. 37.
    M BARTHEL, Ph.D. Thesis, University of Tübingen, Germany (2001).Google Scholar
  38. 38.
    M. BARTHEL, D. DINI, S. VAGIN and M. HANACK, Eur. J. Org. Chem. (2002) 3756.Google Scholar
  39. 39.
    N. KOBAYASHI, Coord. Chem. Rev. 219/221 (2001) 99; N. KOBAYASHI and A. MURANAKA, The 50th Annual Meetings of Coordination Chemistry Society, Kusatsu, Japan, September 16–18, 2000.Google Scholar
  40. 40.
    (a) Y. CHEN, Z. E. HUANG, R. F. CAI and B. C. YU, Eur. Polym. J. 34 (1998) 137; (b) N. B. MCKEOWN, “Phthalocyanine Materials: Synthesis, Structure and Function,” edited by B. DUNN, J. W. GOODBY, A. R. WEST (Cambridge University Press, 1998).Google Scholar
  41. 41.
    (a) D. G. RODRIGUEZ and T. TORRES, Electrochem. Soc. Proc. 12 (2002) 195; (b) G. BRUSATIN and R. SIGNORINI, J. Mater. Chem. 12 (2002) 1964; (c) S. UCHIDA, J. XUE, B. P. RAND and S. R. FORREST, Appl. Phys. Lett. 84 (2004) 4218.Google Scholar
  42. 42.
    T. G. LINSSEN, K. DUERR, M. HANACK and A. HIRSCH, J. Chem. Soc. Chem. Commun. (1995) 103.Google Scholar
  43. 43.
    (a) A. GOULOUMIS, S. G. LIU, A. SAATRE, P. VAZQUEZ, L. ECHEGOYEN and T. TORRES, Chem. Eur. J. 6 (2000) 3600; (b) K. DUERR, S. FIEDLER, T. LINSSEN, A. HIRSCH and M. HANACK, Chem. Ber. 130 (1997) 1375; (c) A. SASTRE, A. GOULOUMIS, P. VAZQUEZ, T. TORRES, V. DOAN, B. J. SCHWARTZ, F. WUDL, L. ECHEGOYEN and J. RIVERA, Org. Lett. 1 (1999) 1807.Google Scholar
  44. 44.
    (a) Y. CHEN, M. E. EI-KHOULY, M. SASAKI, Y. ARAKI and O. ITO, Org. Lett. 7 (2005) 1613; (b) B. BALLESTEROS, G. D. L. TORRE, T. TORRES, G. L. HUG, G. M. A. RAHMAN, D. M. GULDI, Tetrahedron, in press (doi:10.1016/j.tet.2005.08.126), 2005.CrossRefGoogle Scholar
  45. 45.
    K. YAMASAKI, O. OKADA, K. INAMI, K. OKA, M. KOTANI and H. YAMADA, J. Phys. Chem. B, 101 (1997) 13.CrossRefGoogle Scholar
  46. 46.
    Y. CHEN, L. R. SUBRAMANIAN, M. FUJITSUKA, O. ITO, S. O’FLAHERTY, W. J. BLAU, T. SCHNEIDER, D. DINI and M. HANACK, Chem. Eur. J. 8 (2002) 4248.CrossRefGoogle Scholar
  47. 47.
    V. KRISHNAN, M. P. FETH, E. WENDEL, Y. CHEN, M. HANACK and H. BERTAGNOLLI, Z. Phys. Chem. 218 (2004) 1.CrossRefGoogle Scholar
  48. 48.
    C. G. CLAESSENS, A. GOULOUMIS, M. BARTHEL, Y. CHEN, G. MARTIN, F. AGULLO-LOPEZ, I. LEDOUX-RAK, J. ZYSS, M. HANACK and T. TORRES, J. Porph. Phthal. 7 (2003) 291.CrossRefGoogle Scholar
  49. 49.
    J. KLEINWAECHTER and M. HANACK, J. Am. Chem. Soc. 119 (1997) 10684.CrossRefGoogle Scholar
  50. 50.
    Y. CHEN, M. BARTHEL, M. SEILER, L. R. SUBRAMANIAN, H. BERTAGNOLLI and M. HANACK, Angew. Chem. Int. Ed. Engl. 41 (2002) 3239.CrossRefGoogle Scholar
  51. 51.
    T. NAGAMURA, A. NAITO, I. YOSHIDA, Y. CHEN, M. HANACK and J. NONLINEAR, Opt. Phys. Mater. 11 (2002) 205.CrossRefGoogle Scholar
  52. 52.
    H. BERTAGNOLLI and T. S. ERTEL, Angew. Chem. Int. Ed. Engl. 33 (1994) 45.CrossRefGoogle Scholar
  53. 53.
    (a) Y. CHEN. D. DINI, M. HANACK, M. FUJITSUKA and O. ITO, Chem. Commun. (2004) 340; (b) Y. CHEN. Y. ARAKI, M. FUJITSUKA, M. HANACK, O. ITO, S. M. O’FLAHERTY and W. J. BLAU, Sol. State Commun. 131 (2004) 773.Google Scholar
  54. 54.
    R.-Y. ZHU, Y. CHEN, J. ZHOU, B. LI, W. M. LIU, S. X. QIAN, M. HANACK, Y. ARAKI and O. ITO, Chem. Phys. Lett. 398 (2004) 308.CrossRefGoogle Scholar
  55. 55.
    M. SHEIK-BAHAE, A. A. SAID and E. W. VAN STRYLAND, Opt. Lett. 14 (1989) 955.CrossRefGoogle Scholar
  56. 56.
    J. S. SHIRK, Private Communication with (2002).Google Scholar
  57. 57.
    (a) A. PARTORI, A. M. GLASS, T. H. CHIU and D. T. H. LIU, Opt. Lett. 18 (1993) 906; (b) P. TAYEBATI, E. CANOGLU, C. HANTZIS and R. N. SACKS, Appl. Phys. Lett. 71 (1997) 1610; (c) R. JONES, M. TZIRAKI, P. M. W. FRENCH, K. M. KWOLEK, D. D. NOLTE and M. R. MELLOCH, Opt. Exp. 2 (1998) 439.Google Scholar
  58. 58.
    (a) T. OKAMOTO, T. KAMIYAMA and I. YAMAGUCHI, Opt. Lett. 18 (1993) 1570; Q. W. SONG, C. -P. ZHANG, R. BLUMER, R. B. GROSS, Z.-P. CHEN and R. R. BIRGE, Opt. Lett. 18 (1993) 1373; (b) D. FICHOU, J.-M. NUNZI, F. CHARRA and N. PFEFFER, Adv. Mater. 6 (1994) 64; (c) A. YACOUBIAN and T. M. AYE, Appl. Opt. 32 (1993) 3073.Google Scholar
  59. 59.
    (a) T. NAGAMURA, in “Femtosecond Technology,” edited by T. KAMIYA, F. SAITO, O. WADA and H. YAJIMA, Springer Series in Photonics 2 (Springer-Verlag, Berlin Heidelberg, 1999) Part VI-4, p. 376; (b) T. NAGAMURA, H. SAKAGUCHI, AND S. MUTA, Proc. SPIE 2514 (1995) 241; (c) H. INOUE, H. SAKAGUCHI and T. NAGAMURA, Appl. Phys. Lett. 73 (1998) 10.Google Scholar
  60. 60.
    H. INOUE, D. J. ELLIOT, M. TADA, T. NAGAMURA, F. GRIESER, H. SAKAGUCHI and D. N. FURLONG, Colloids and Surfaces, A: Physicochem. Eng. Aspts. 169 (2000) 233.CrossRefGoogle Scholar
  61. 61.
    (a) T. NAGAMURA, K. SASAKI, F. IIZUKA, T. ADACHI, and I. YOSHIDA, Opt. Commun. 205 (2002) 107; (b) T. NAGAMURA and T. HAMADA, Appl. Phys. Lett. 69 (1996) 1191; (c) T. NAGAMURA, in “Sensors and Optical Switching (Molecular and Supramolecular Photochemistry Series),” edited by V. Ramamurthy and K. S. Schanze (Marcel Dekker, Inc., New York, 2001) Vol. 7 p. 387; (d) T. NAGAMURA, T. ADACHI, I. YOSHIDA, H. INOUE, H. HECKMANN and M. HANACK, Mol. Cryst. Liq. Cryst. 370 (2001) 97.Google Scholar
  62. 62.
    A. NAITO, I. YOSHIDA, T. NAGAMURA, Y. CHEN and M. HANACK, Shizuoka Daigaku Denshi Kogaku Kenkyusho Kenkyu Hokoku 37 (2002) 69.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Yu Chen
    • 1
    • 2
    Email author
  • Michael Hanack
    • 2
  • Werner J. Blau
    • 3
  • Danilo Dini
    • 2
  • Ying Liu
    • 1
  • Ying Lin
    • 1
  • Jinrui Bai
    • 1
  1. 1.Department of Chemistry, Lab for Advanced MaterialsEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Institut für Organische Chemie, Organische Chemie IIUniversität TübingenTübingenGermany
  3. 3.Materials Ireland Polymer Research Centre, Department of PhysicsTrinity College DublinDublin 2Republic of Ireland

Personalised recommendations