Advertisement

Effects of melt temperature and mold preheating temperature on the fluidity of Ca containing AZ31 alloys

  • C. D. YimEmail author
  • B. S. You
  • R. S. Jang
  • S. G. Lim
Article

Abstract

The effects of melt temperature and mold preheating temperature on the fluidity of Ca containing AZ31 alloys were evaluated under various casting conditions. The flow lengths of AZ31-xCa alloy melt increased with increasing the melt temperature due to lower viscosity and longer time to fill the mold cavity. The increment of the flow lengths of AZ31-xCa alloy melt with increasing the mold preheating temperature was not large due to large diameter of circular cross section of mold cavity. The fluidity of AZ31-xCa alloy melts was affected more forcefully by melt temperature than by mold preheating temperature under casting conditions used in this study. Also, the flow lengths of AZ31-xCa alloy melt were affected by grain size of primary solid particles solidified during filling mold cavity and surface oxide film due to addition of Ca.

Keywords

Oxide Polymer Grain Size Viscosity Mold 

References

  1. 1.
    S. CASHION and N. RICKETTS, in Magnesium Technology 2000, Nashville, March 2000, edited by H. I. Kaplan, J. N. Hryn and B. B. Clow (TMS, Warrendale, PA, 2000) p. 77.Google Scholar
  2. 2.
    N. RICKETTS and S. CASHION, in Magnesium Technology 2001, New Orleans, February 2001, edited by J. Hryn (TMS, Warrendale, PA, 2001) p. 31.Google Scholar
  3. 3.
    M. SAKAMOTO, S. AKIYAMA, T. HAGIO and K. OGI, J. Jpn. Foundry Eng. Soc. 69 (1997) 227.Google Scholar
  4. 4.
    S. Y. CHANG and J. C. CHOI, Metals and Materials Int. 4 (1998) 165.CrossRefGoogle Scholar
  5. 5.
    M. H. KIM, W. W. PARK, B. S. YOU, Y. B. HUANG and W. C. KIM, Mater Sci Forum 419–422 (2003) 575.CrossRefGoogle Scholar
  6. 6.
    B. S. YOU, M. H. KIM, W. W. PARK and I. S. CHUNG, ibid. 419–422 (2003) 581.CrossRefGoogle Scholar
  7. 7.
    B. H. CHOI, B. S. YOU, W. W. PARK, Y. B. HUANG and I. M. PARK, Metals and Materials Int. 9 (2003) 395.CrossRefGoogle Scholar
  8. 8.
    Y. B. HUANG, I. S. CHUNG, B. S. YOU, W. W. PARK and B. H. CHOI, ibid., 10 (2004) 7.CrossRefGoogle Scholar
  9. 9.
    B. H. CHOI, B. S. YOU, W. W. PARK and I. M. PARK, J. Kor. Met. Mater. 42 (2004) 674.Google Scholar
  10. 10.
    B. H. CHOI, B. S. YOU, C. D. YIM, W. W. PARK and I. M. PARK, Mater Sci Forum 475–479 (2005) 2477.CrossRefGoogle Scholar
  11. 11.
    M. C. FLEMINGS, in “Solidification Processing” (McGraw-Hill, Inc., New York, 1974) p. 220.Google Scholar
  12. 12.
    S. L. SIN and D. DUBE, Mater. Sci. Eng. A 386 (2004) 34.CrossRefGoogle Scholar
  13. 13.
    G. H. GEIGER and D. R. POIRIER, in “Transport Phenomena in Metallurgy” (Addison-Wesley Publishing Company; Reading, MA, 1973) p. 15.Google Scholar
  14. 14.
    Y. C. LEE, K. DAHLE and D. H. STJOHN, Metall. Mater. Trans.A 31A (2000) 2895.CrossRefGoogle Scholar
  15. 15.
    Y.-D. KWON, Z.-H. LEE and K.-H. KIM, J. Kor. Foundrymen’s Soc. 22 (2002) 109.Google Scholar
  16. 16.
    Idem, Mater. Sci. Eng. A 360 (2003) 372.CrossRefGoogle Scholar
  17. 17.
    W. QUDONG, L. YIZHEN, Z. XIAOQIN, D. WENJIANG, Z. YANPING, L. QINGHUA and L. JIE, ibid 271 (1999) 109.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • C. D. Yim
    • 1
    Email author
  • B. S. You
    • 1
  • R. S. Jang
    • 2
  • S. G. Lim
    • 2
  1. 1.Energy Materials Research CenterKorea Institute of Machinery and MaterialsGyeongnamKorea
  2. 2.Division of Materials EngineeringGyeongsang National UniversityGyeongnamKorea

Personalised recommendations