Skip to main content
Log in

Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The paper presents an electron microscopy study of the macro, micro and nanostructure of titania nano-tubes formed by electrochemical anodisation of titanium in a fluorine containing electrolyte. Scanning electron microscopy (SEM) is used to examine the overall structure of the nano-tubes formed under potentiostatic conditions. Transmission electron microscopy (TEM) has been used to examine the structure of the oxide layer of a sample anodised for a relatively short period (30 min) and provides a new insight into the formation of titania nano-tubes. The fluorine ions are able to nucleate sites on the titanium metal and generate a series of interconnected cavities or pores in the oxide complex formed, allowing current to flow within this film. Under specific conditions the cavities and randomly dispersed pores can align in the direction of the applied electric field and link up to generate an array of tubes, where the passage of ions and water is optimised. We also suggest that oxygen evolution at the anode may play a role in the development of the nano-tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu X, Kim KH, Jeong Y (2001) Biomaterials 22:2199

    Article  CAS  Google Scholar 

  2. Yang B, Uchida M, Kim HM, Zhang X, Kokubo T (2004) Biomaterials 25:1003

    Article  CAS  Google Scholar 

  3. Oh SH, Finõnes RR, Daraio C, Cen LH, Jin S (2005) Biomaterials 26:4938

    Article  CAS  Google Scholar 

  4. Mor GK, Carvalho MA, Pishko MV, Grimes CA (2004) J Mater Res 19:628

    Article  CAS  Google Scholar 

  5. Varghese OK, Grimes CA (2003) J Nanosci Nanotechnol 3:277

    Article  CAS  Google Scholar 

  6. Varghese OK, Gong D, Paulose M, Ong KG, Grimes CA (2003) Sens Actuat B 93:338

    Article  CAS  Google Scholar 

  7. Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Adv Mater 15:624

    Article  CAS  Google Scholar 

  8. Fox MA, Dulay MT (1993) Chem Rev 93:341

    Article  CAS  Google Scholar 

  9. Hoffmann MR, Martin ST, Choi W, Bahnemannt DW (1995) Chem Rev 95:69

    Article  CAS  Google Scholar 

  10. Mills A, Hill G, Bhopal S, Parkin IP, O’Neill SA (2003) J Photochem Photobiol A: Chem 160:185

    Article  CAS  Google Scholar 

  11. Mor GK, Shankar K, Varghese OK, Grimes CA (2004) J Mater Res 19:2989

    Article  CAS  Google Scholar 

  12. Reddy BM, Ganesh I, Khan A (2004) J Mol Catal A: Chem 223:295

    Article  CAS  Google Scholar 

  13. Jang HD, Kim S-K, Kim S-J (2001) J Nanoparticle Res 3:141

    Article  CAS  Google Scholar 

  14. Minabe T, Tryk DA, Sawunyama P, Kikuchi Y, Hashimoto K, Fujishima A (2000) J Photochem Photobiol A: Chem 137:53

    Article  CAS  Google Scholar 

  15. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2005) Nano Lett 5:191

    Article  CAS  Google Scholar 

  16. Grätzel M (2003) J Photochem Photobiol C: Photochem Rev 4:145

    Article  Google Scholar 

  17. Park JH, Kim S, Bard AJ (2006) Nano Lett 6:24

    Article  CAS  Google Scholar 

  18. Grätzel M (2001) Nature 414:338

    Article  Google Scholar 

  19. Longo C, De Paoli MA (2003) J Braz Chem Soc 14:889

    Article  CAS  Google Scholar 

  20. Macák JM, Tsuchiya H, Ghicov A, Schmuki P (2005) Electrochem Commun 7:1133

    Article  Google Scholar 

  21. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Nano Lett 6:215

    Article  CAS  Google Scholar 

  22. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energy Mater Sol Cells 90:2011

    Article  CAS  Google Scholar 

  23. Park N-G, Van de Lagemaat J, Frank AJ (2000) J Phys Chem B 104:8989

    Article  CAS  Google Scholar 

  24. Wang X, Fujimaki M, Awazu K (2005) Optics Expr 13:1486

    Article  CAS  Google Scholar 

  25. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M (1999) Surf Interface Anal 27:629

    Article  CAS  Google Scholar 

  26. Macak JM, Sirotna K, Schmuki P (2005) Electrochim Acta 50:3679

    Article  CAS  Google Scholar 

  27. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331

    Article  CAS  Google Scholar 

  28. Taveira LV, Macák JM, Tsuchiya H, Dick LFP, Schmuki P (2005) J Electrochem Soc 152:B405

    Article  CAS  Google Scholar 

  29. Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P et al (2005) Angew Chem Int Ed 44:7463

    Article  CAS  Google Scholar 

  30. Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TA, Fitzgerald A, Grimes CA (2006) J Phys Chem B 110:16179

    Article  CAS  Google Scholar 

  31. Zhao J, Wang X, Chen R, Li L (2005) Solid State Commun 134:705

    Article  CAS  Google Scholar 

  32. Mor GK, Varghese OK, Paulose M, Mukherjee N, Grimes CA (2003) J Mater Res 18:2588

    Article  CAS  Google Scholar 

  33. Choi J, Wehrspohn RB, Lee J, Gösele U (2004) Electrochim Acta 49:2645

    Article  CAS  Google Scholar 

  34. Macak JM, Tsuchiya H, Schmuki P (2005) Angew Chem Int Ed 44:2100

    Article  CAS  Google Scholar 

  35. Lohrengel MM (1993) Mater Sci Eng R: Report 11:243

    Article  Google Scholar 

  36. Rahim MAA (1995) J Appl Electrochem 25:881

    Article  CAS  Google Scholar 

  37. Cai Q, Paulose M, Varghese OK, Grimes CA (2005) J Mater Res 20:230

    Article  CAS  Google Scholar 

  38. Regonini D, Bowen CR, Stevens R, Allsopp D, Jaroenworaluck A (accepted) Phys. Status Solidi A

Download references

Acknowledgements

The Royal Academy of Engineering, The Worshipful Company of Armourers and Brasiers and Novelis are gratefully acknowledged for the financial contribution provided in support of this work. The Nanotechnology Centre of the Cranfield University is also acknowledged for FE-SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Regonini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaroenworaluck, A., Regonini, D., Bowen, C.R. et al. Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte. J Mater Sci 42, 6729–6734 (2007). https://doi.org/10.1007/s10853-006-1474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1474-9

Keywords

Navigation