Skip to main content
Log in

On the application of the “rule of mixture” to microhardness of complex polymer systems containing a soft component and/or phase

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The main goal of this work is to find a reasonable explanation for the frequently reported drastic deviations from the “rule of mixture” applied for calculation of the overall microhardness, H, of complex polymer systems comprising a soft, (with a glass transition, T g, or melting, T m, temperatures below room temperature) component and/or phase. According to the common practice, the contribution to H of the soft component and/or phase, H s, is considered as H s = 0, which results in extremely large differences between the measured and calculated H values for systems comprising more than 20–25 wt% soft component and/or phase. For such systems a different deformation mechanism during indentation process is postulated, namely “floating” of the solid particles in the soft component and/or phase, in addition to their plastic deformation. The contribution of the “floating effect” to the overall H is accounted for by the empirically derived relationship H = 1.97 T g−571. Using the reported data on H and T g for homopolymers, blockcopolymers and blends, the H values are recalculated and a good agreement with the experimentally measured values is found. A modified additivity law is suggested, which contains a term accounting for the contribution of the soft component and/or phase to the overall microhardness via the relationship between H and T g; its application results in much smaller differences between the measured and calculated H values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Balta Calleja FJ, Fakirov S (2000) Microhardness of polymers. Cambridge University Press, Cambridge

    Google Scholar 

  2. Jawhai T, Merino JC, Rodriguez-Cabello JC, Pastor M (1993) Polymer 34:1613

    Article  CAS  Google Scholar 

  3. Osawa S, Porter M (1996) ibid 37:2095

    CAS  Google Scholar 

  4. Kiely JD, Hwang RQ, Houston JE (1998) Phys Rev Lett 81:4424

    Article  CAS  Google Scholar 

  5. Lee EH, Rao GR, Mansur LK (1996) Trends Polym Sci 4:229

    CAS  Google Scholar 

  6. Briscoe BJ, Sebastian KS (1996) Proc R Soc Lond A 452:439

    Article  CAS  Google Scholar 

  7. Eyerer P, Lang G (1972) Kunststoffe 62:222

    Google Scholar 

  8. Balta Calleja FJ (1994) Trends Polym Sci 2:419

    CAS  Google Scholar 

  9. Balta Calleja FJ (1985) Adv Polym Sci 66:117

    CAS  Google Scholar 

  10. Balta Calleja FJ, Santa Cruz C, Bayer RK, Kilian HG (1990) Colloid Polym Sci 268:1

    Article  Google Scholar 

  11. Apostolov AA, Boneva D, Balta Calleja FJ, Krumova M, Fakirov S (1998) J Macromol Sci Phys B37:543

    Google Scholar 

  12. Balta Calleja FJ, Fakirov S, Roslaniec Z, Krumova M, Ezquerra TA, Rueda DR (1998) J Macromol Sci Phys B37:219

    Google Scholar 

  13. Fakirov S, Balta Calleja FJ, Krumova M (1999) J Polym Sci Polym Phys Ed 37:1413

    Article  CAS  Google Scholar 

  14. Brandrup J, Immergut EH (1989) Polymer Handbook. John Wiley and Sons, New York

    Google Scholar 

  15. Geil PH (1987) In: Keinath SK, Miller RL, Rieke JK (eds) Ultraquenching, double Tg, order, and motion in amorphous polymers, in Order in the Amorphous “State” of Polymers, Plenum, p 83

  16. Breedon Jones J, Barenberg S, Geil PH (1979) Polymer 20:903

    Article  Google Scholar 

  17. Lam R, Geil PH (1978) Polym Bull 1:127

    Article  CAS  Google Scholar 

  18. Lam R, Geil PH (1981) J Macromol Sci Phys B20:37

    Google Scholar 

  19. Miyaji H, Geil PH (1981) Polymer 22:701

    Article  CAS  Google Scholar 

  20. Perena JM, Martin B, Pastor M (1989) J Mater Sci Lett 8:349

    Article  CAS  Google Scholar 

  21. Popli R, Glotin M, Mandelkern L, Benson RS (1984) J Polym Sci Polym Phys Ed 22:406

    Article  Google Scholar 

  22. Gonzales CC, Perena JM, Bello A, Martin B, Merino JC, Pastor JM (1989) J Mater Sci Lett 8:1418

    Article  Google Scholar 

  23. Lorenzo V, Benavente R, Perez E, Bello A, Perena JM (1993) J Appl Polym Sci 48:1177

    Article  CAS  Google Scholar 

  24. Fakirov S, Krasteva B (2000) J Macromol Sci Phys B39:297

    Article  Google Scholar 

  25. Boyanova M, Fak irov S (2004) Polymer 45:2093

    Article  CAS  Google Scholar 

  26. Sperling LH (1986) Introduction to Physical Polymer Science. Wiley-Science, New York

    Google Scholar 

  27. Legge NR, Holden G, Schroeder HE (eds) (1987) Thermoplastic elastomers. A Comprehensive Review. Hanser, Munich

    Google Scholar 

  28. Roslaniec Z, Ezquerra TA, Balta Calleja FJ (1995) Colloid Polym Sci 273:58

    Article  CAS  Google Scholar 

  29. Giri L, Roslaniec Z, Ezquerra TA, Balta Calleja FJ (1997) J Macromol Sci Phys B36:335

    Google Scholar 

  30. Ania F, Martinez-Salazar J, Balta Calleja FJ (1989) J Mater Sci 24:2934

    Article  CAS  Google Scholar 

  31. Pietkiewicz D, Roslaniec Z (1999) Polimery 44:115

    CAS  Google Scholar 

  32. Flores A, Pietkiewicz D, Stribeck N, Roslaniec Z, Balta Calleja FJ (2001) Macromolecules 34:8094

    Article  CAS  Google Scholar 

  33. Fakirov S, Boneva D, Balta Calleja FJ, Krumova M, Apostolov AA (1998) J Mater Sci Lett 17:453

    Article  CAS  Google Scholar 

  34. Martinez-Salazar J, Canalda Camara JC, Balta Calleja FJ (1991) J Mater Sci Lett 26:2579

    CAS  Google Scholar 

  35. Noland JS, Hsu NNC, Saxon R, Schmitt JM (1971) Adv Chem Ser 99:15

    Article  CAS  Google Scholar 

  36. Jungnickel BJ (1996) In: Salamone JC (ed) Polymeric materials encyclopedia, vol 9. CRC Press, Boca Raton, p 7115

    Google Scholar 

  37. Fakirov S, Balta Calleja FJ, Boyanova M (2003) J Mater Sci Lett 22:1011

    Article  CAS  Google Scholar 

  38. Gordon M, Taylor JS (1952) J Appl Chem 2:493

    Article  CAS  Google Scholar 

  39. Plazek DJ, Hgai KL (1996) In: Mark JE (ed) Physical properties of polymers handbook. American Institute of Physics, Woodbury New York, p 139

    Google Scholar 

  40. Simov D, Fakirov S, Mikhailov M, Kolloid Z (1970) Z Polym 238:521

    Article  CAS  Google Scholar 

  41. Adhikari R, Michler GH, Cagiao ME, Balta Calleja FJ (2003) J Polym Eng 23:177

    CAS  Google Scholar 

  42. Michler GH, Balta Calleja FJ, Puente I, Cagiao ME, Knoll K, Henning S, Adhikari R (2003) J Appl Polym Sci 90:1670

    Article  CAS  Google Scholar 

  43. Balta Calleja FJ, Cagiao ME, Adhikari R, Michler GH (2004) Polymer 45:247

    Article  CAS  Google Scholar 

  44. Wunderlich B (1990) Thermal analysis. Academic, Boston

    Google Scholar 

  45. Lide DR (1994). CRC handbook of chemistry and physics. CRC Press, Boca Raton FL

    Google Scholar 

  46. Rueda DR, Balta Calleja FJ, Hidalgo A (1974) Spectrochim Acta 30a:1545

    Article  Google Scholar 

  47. Martinez-Salazar J, Balta Calleja FJ (1980) J Cryst Growth 48:283

    Article  Google Scholar 

  48. Gonzales Ortega JC, Balta Calleja FJ (1974) An Fiz 70:92

    Google Scholar 

  49. Martinez-Salazar J (1979) PhD Thesis, Universidad Autonoma de Madrid, Madrid Spain

  50. Fakirov S, Krumova M, Rueda DR (2000) Polymer 42:3047

    Article  Google Scholar 

  51. Balta Calleja FJ, Giri L, Esquerra TA, Fakirov S, Roslaniec Z (1997) J Macromol Sci Phys B36:655

    Google Scholar 

  52. Garcia Gutierez MC, Michler GH, Henning S, Schade C (2001) J Macromol Sci-Phys B40:795

    Google Scholar 

  53. Fakirov S, Krumova M, Krasteva B (2000) J Mater Sci Lett 19:2123

    Article  CAS  Google Scholar 

  54. Mina MF, Ania F, Balta Calleja FJ, Asano T (2004) J Appl Polym Sci 91:205

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. F. J. Balta Calleja from the Instituto de Estructura de la Materia, CSIC, Madrid, Spain, for his stimulating discussions on the disclosed topic, as well as Prof. D. Rueda from the same Institute for reading the manuscript and for his valuable suggestions. Thanks are also due to Mag. Chem. M. Boyanova for her technical help during preparation of manuscript. The author acknowledges also the financial support of the Foundation for Reasearch, Science and Technology of New Zealand, making possible his stay at the Department of Mechanical Engineering and the Centre for Advanced Composite Materials of The University of Auckland, Auckland, New Zealand, where this study was finalized. The hospitality of The University of Auckland is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fakirov.

Additional information

On leave from Laboratory on Polymers, University of Sofia, 1126 Sofia, Bulgaria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fakirov, S. On the application of the “rule of mixture” to microhardness of complex polymer systems containing a soft component and/or phase. J Mater Sci 42, 1131–1148 (2007). https://doi.org/10.1007/s10853-006-1468-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1468-7

Keywords

Navigation