Skip to main content
Log in

Absorption and emission spectral analysis of Pr3+: tellurite glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper reports on the results concerning optical absorption and fluorescence properties of 60TeO2–25ZnO–10BaO–4.5La2O3–0.5Pr2O3 (Pr3+: TZBL) glass. Both electronic (αe) and vibrational (αv) band edge cut-off wavelengths of the host glass (TZBL) have been evaluated from the measurement of its UV–Vis and IR transmission spectra. The glass studied has shown 80% transmittance throughout its optical window from 0.366 μm (αe = 3.39 eV) to 6.30 μm (αv = 0.197 eV). The FT-IR transmission spectra of Pr3+ doped and also reference tellurite glasses have demonstrated the presence of TeO4 and TeO3+1 or TeO3 structural units. The thermal properties of this glass have been investigated from the study of DTA profile. The recorded optical absorption spectra of Pr3+: TZBL glass have shown eight absorption bands from 300 nm to 2,500 nm. The fluorescence emission has been observed mainly from 3P1, 3P0 and 1D2 states to the lower lying states and which are assigned to the transitions of 3P03H4,5,6; 3P03F2,3,4; 3P13H5 & 1D23H4,5 upon excitations at three excitation states of 3P0,1,2. From the time resolved spectra, it is found that 3P0 level decays faster than 1D2 level. The fluorescence decay kinetics of 3P0 and 1D2 levels have been measured and the lifetimes are found to be 21 and 39 μs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig 6:
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jackson SD (2003) Appl Phys Lett 83:1316

    Article  CAS  Google Scholar 

  2. Rakov N, Maciel GS, Sundheimer ML, de S. Menezes L, Gomes ASL, Messaddeq Y, Cassanjes FC, Poirier G, Ribeiro SJL (2002) J Appl Phys 92:6637

    Article  Google Scholar 

  3. Lin H, Wang XY, Lin L, Yang DL, Xu TK, Yu JY, Pun EYB (2006) J Lumin 116:139

    Article  CAS  Google Scholar 

  4. Sun H, Duan Z, Zhou G, Yu C, Liao M, Hu L, Zhang J, Jiang Z (2006) Spectrochim Acta A 63(1):149

    Article  Google Scholar 

  5. Pan Z, Morgan SH, Dyer K, Ueda A, Liu H (1996) J Appl Phys 79(12):8906

    Article  CAS  Google Scholar 

  6. Xu S, Fang D, Jiang Z, Zhang J (2005) J Solid State Chem 178:1817

    Google Scholar 

  7. Shen S, Richards B, Jha A (2006) Opt Express 14(12):5050

    Article  CAS  Google Scholar 

  8. Cacho VDD, Kassab LRP, de Oliveira SL, Morimoto NI (2006) Mater Res 9(1):21

    Article  Google Scholar 

  9. Narazaki A, Tanaka K, Hirao K, Soga N (1998) J Appl Phys 83(8):3986

    Article  CAS  Google Scholar 

  10. Sidebottom DL, Hrushka MA, Potter BG, Brow RK (1997) J Non-Crys Solids 222:282

    Article  CAS  Google Scholar 

  11. Chen H, Liu YH, Zhou YF, Zhang QY, Jiang ZH (2005) J Non-Cryst Solids 351:3060

    Article  CAS  Google Scholar 

  12. Annapurna K, Dwivedi RN, Buddhudu S (1999) Mater Lett 40(6):259

    Article  CAS  Google Scholar 

  13. Annapurna K, Dwivedi RN, Buddhudu S (2000) Opt Mater 13(4):381

    Article  CAS  Google Scholar 

  14. Bürger H, Kneipp K, Hobert H, Vogel W (1992) J Non-Cryst Solids 151:134

    Article  Google Scholar 

  15. Romanowski WR, Sokolska I, Golab S, Lukasiewicz T (1997) Appl Phys Lett 70(6):686

    Article  Google Scholar 

  16. Wang S, Vogel EM, Snitzer E (1994) Opt Mater 3:187

    Article  CAS  Google Scholar 

  17. Takebe H, Fujino S, Morinaga K (1994) J Am Ceram Soc 77:2455

    Article  CAS  Google Scholar 

  18. Himei Y, Osaka A, Nanba T, Miura Y (1994) J Non-Cryst Solids 177:164

    Article  CAS  Google Scholar 

  19. Man SQ, Pun EYB, Chung PS (1999) Optics Commun 168:369

    Article  CAS  Google Scholar 

  20. Fortes L, Santos LF, Goncalves MC, Almeida RM (2006) J Non-Cryst Solids 352:690

    Article  CAS  Google Scholar 

  21. Krasteva V, Hensley D, Sigel G Jr (1997) J Non-Cryst Solids 222:235

    Article  CAS  Google Scholar 

  22. Shaltout I, Badr Y (2006) Phys B 381:187

    Article  CAS  Google Scholar 

  23. Yang JH, Dai SX, Dai NL, Wen L, Hu LL, Jiang ZH (2004) J Lumin 106:9

    Article  CAS  Google Scholar 

  24. Di Bartolo B, Bowlby BE (2003) J Lumin 102–103:481

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Dr. H.S. Maiti, Director, CGCRI, Kolkata and Dr. K. Phani, Head, Glass Division, for their kind co-operation and continued support in the present work. One of the authors (RC) expresses her gratefulness to the CGCRI, CSIR for awarding her with a research internship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Annapurna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annapurna, K., Chakrabarti, R. & Buddhudu, S. Absorption and emission spectral analysis of Pr3+: tellurite glasses. J Mater Sci 42, 6755–6761 (2007). https://doi.org/10.1007/s10853-006-1465-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1465-x

Keywords

Navigation