Skip to main content
Log in

Hydrogen accumulation in graphite and etching of graphite on hydrogen desorption

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Studies of Atomic Hydrogen accumulation in highly oriented pyrolytical graphite (HOPG) have been performed using scanning tunnelling microscope (STM) and atomic force microscope (AFM). It is found that after intercalation atomic hydrogen is stored among graphene layers in H2 gas form, captured inside graphene blisters. On desorption of hydrogen, some lateral etching of upper graphene layers takes place. Significant information about intake, retention and possibility of manifold accumulation of hydrogen in HOPG has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ouellette J (1999) The industrial physicist. vol 5, 1, American Institute of Physics, Woodbury, NY, p 15

  2. Hynek S, Fuller W, Bentley J (1997) Int J Hydrogen Energy 22:601

    Article  CAS  Google Scholar 

  3. Klanchar M, Lloyd CL (2000) Compact hydrogen generating systems based on chemical sources for low and high power applications. In Proceedings of the 39th Power Sources Conference, pp 188–191

  4. Buchner H, Pelloux-Gervais P, Müller M, Grafwallner F, Luger P (1995) In: Pohl HW (ed) Hydrogen and other alternative fuels for air and ground transportation, chaps. 7–11, Wiley, Chichester, UK

  5. Schlapbach L, Züttel A (2001) Nature 414(15):353 (and references therein)

  6. Gao H, Wu XB, Li JT, Wu GT, Lin JY, Wu K, Xu DS (2003) Appl Phys Lett 83(16):3389

    Article  CAS  Google Scholar 

  7. Kajiura H, Tsutsui S, Kadono K, Kakuta M, Ata M, Murakami Y (2003) Appl Phys Lett 82(7):1105

    Article  CAS  Google Scholar 

  8. Ritschel M, Uhlemann M, Gutfleisch O, Leonhardt A, Graff A, Täschner Ch, Fink J (2002) Appl Phys Lett 80(16):2985

    Article  CAS  Google Scholar 

  9. Liu C, Yang QH, Tong Y, Cong HT, Cheng HM (2002) Appl Phys Lett 80(13):2389

    Article  CAS  Google Scholar 

  10. Kadono K, Kajiura H, Shiraishi M (2003) Appl Phys Lett 83(16):3392

    Article  CAS  Google Scholar 

  11. Hirscher M, Becher M, Haluska M, Dettlaff-Weglikowska U, Quintel A, Duesberg GS, Choi Y-M, Downes P, Hulman M, Roth S, Stepanek I, Bernier P (2001) Appl Phys A 72:129

    Article  CAS  Google Scholar 

  12. Stan G, Bojan MJ, Curtarolo S, Gatica SM, Cole MW (2000) Phys Rev B 62:2173

    Article  CAS  Google Scholar 

  13. Gatica SM, Cole MW, Stan G, Hartman JM, Crespi VH (2000) Phys Rev B 62 9989

    Article  CAS  Google Scholar 

  14. Mercedes Calbi M, Gatica SM, Bojan MJ, Stan G, Cole MW (2001) Rev Mod Phys 73:857

    Article  Google Scholar 

  15. Mercedes Calbi M, Toigo F, Cole MW (2001) Phys Rev Lett 86:5062

    Article  CAS  Google Scholar 

  16. Kostov MK, Cheng H, Herman RM, Cole MW, Lewis JC (2002) J Chem Phys 116:1720

    Article  CAS  Google Scholar 

  17. Pradhan BK, Harutyunyan AR, Stojkovic D, Grossman JC, Zhang P, Cole MW, Crespi V, Goto H, Fujiwara J, Eklund PC (2002) JMR 17(9):2209

    CAS  Google Scholar 

  18. Chen G, Bandow S, Margine ER, Nisoli C, Kolmogorov A, Crespi VH, Gupta R, Sumanasekera G, Iijima S, Eklund P (2003) Phys Rev Lett 90:2574

    Google Scholar 

  19. Phylipps V, Vietzke E, Erdweg M, Flaskamp K (1987) J Nucl Mater 145–147:292

    Article  Google Scholar 

  20. Hucks P, Flaskamp K, Vietzke E (1980) J Nucl Mater 93–94:558–563

    Article  Google Scholar 

  21. Dresselhaus MS, Williams KA, Eklund PC (1999) MRS Bull 24(11):45

    CAS  Google Scholar 

  22. Chambers A, Park C, Baker RTK, Rodriguez NM (1998) J Phys Chem B 102:4253

    Article  CAS  Google Scholar 

  23. Rzepka M, Lamp P, dela casa-Lillo MA (1998) J Phys Chem B 102:10894

    Article  CAS  Google Scholar 

  24. Dresselhaus MS, Dresselhaus G (1981) Adv Phys 30:139

    Article  CAS  Google Scholar 

  25. Stan G, Cole MW (1998) J Low Temp Phys 110:539

    Article  CAS  Google Scholar 

  26. Arellano JS, Molina LM, Rubio A, Alonso JA (2000) J Chem Phys 112:8114

    Article  CAS  Google Scholar 

  27. Kranendonk JK (1983) Solid hydrogen. Plenum press, NY, p 131

    Google Scholar 

  28. Denisov EA, Kompaniets TN, Kurdyumov AA, Mazaev SN (1996) J Nucl Mater 233–237:1218

    Article  Google Scholar 

  29. Waqar Z, Denisov EA, Kompaniets TN, Makarenko IV, Titkov AN (2001) Phys Scr T94:132

    Article  CAS  Google Scholar 

  30. Klusek Z, Waqar Z, Denisov EA, Kompaniets TN, Makarenko IV, Titkov AN, Bhatti AS (2000) Appl Surf Sci 161:508

    Article  CAS  Google Scholar 

  31. Klusek Z, Waqar Z, Kozlowski W, Kowalczyk P, Denisov E, Makarenko I, Kompaniets T, Titkov AN, Datta PK (2002) Appl Surf Sci 187:28

    Article  CAS  Google Scholar 

  32. Denisov EA, Kompaniets TN, Kurdyumov AA, Mazaev SN (1998) Plasma Devices Oper 6:265

    CAS  Google Scholar 

  33. Chang H, Bard AG (1991) J Am Chem Soc 113:5588

    Article  CAS  Google Scholar 

  34. Vietzke E, Philipps V (1989) Fusion Technol 15:108

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Waqar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waqar, Z. Hydrogen accumulation in graphite and etching of graphite on hydrogen desorption. J Mater Sci 42, 1169–1176 (2007). https://doi.org/10.1007/s10853-006-1453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1453-1

Keywords

Navigation