Skip to main content
Log in

A numerical study of the effect of heterogeneities in composition on micropyretic synthesis

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Micropyretic synthesis is a technique whereby a material is synthesized by the propagation of a combustion front across a powder. Composition variations in reactants and diluent are common during micropyretic synthesis when powders are mixed and the conventional modeling treatments thus far have only considered uniform systems. Composition variations are thought to result in the local variations of such thermophysical/chemical parameters for the reactant as density, heat capacity, and thermal conductivity; the result is changes in the combustion temperature, propagation velocity, and propagation pattern of a combustion front. This study investigates the impact of composition variations during micropyretic synthesis with Ni + Al. Correlations of variations in the reactants and diluent with the propagation velocity and combustion temperature are both studied by a numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C p :

heat capacity of product (general form), kJ/kg/K

E :

activation energy, kJ/kg

Heterodiluent :

heterogeneity in diluent, %

Heteroreact :

heterogeneity in reactants, %

K 0 :

pre-exponential constant, (s-1 for zero order reaction)

Q :

heat of reaction, kJ/kg

P :

porosity, %

R :

gas constant, kJ/kg/K

R yield,j :

reaction yield at node j, %

T :

temperature, K

T 0 :

initial temperature, K

V i,j :

volume fraction of component i at node j, %

V 0 i :

original (homogeneous) volume fraction of component i, %

X i,j :

molar fraction of component i at node j, %

X 0 i :

original (homogeneous) molar fraction of component i, %

z :

dimensional coordinate, m

d :

diameter of the specimen, m

f R (j):

random number at node j

h :

surface heat transfer coefficient, J/m2/K/s

t :

time, s

ρ:

density, kg/m3

κ:

thermal conductivity (general form), kJ/m/K/s

η:

fraction reacted

References

  1. Li HP (2002) J Mater Res 17(12):3213

    CAS  Google Scholar 

  2. Li HP (2005) Acta Mater 53(8):2405

    Article  CAS  Google Scholar 

  3. Li HP, Bhaduri SB, Sekhar JA (1992) Metall Mat Trans A 24A:251

    Google Scholar 

  4. Li HP, Sekhar JA (1995) J Mater Res 10(10):2471

    CAS  Google Scholar 

  5. Naiborodenko YS, Itin VI (1975) Combust Explos Shock Waves 11(3):293

    Article  Google Scholar 

  6. Merzhanov AG, Khaikin BI (1988) Prog Energy Combust Sci 14:1

    Article  CAS  Google Scholar 

  7. Shkiro VM, Nersisyan GA (1978) Combust Explos Shock Waves (Engl Transl) 14(1):121

    Article  Google Scholar 

  8. Frolov YV, Pivkina AN (1997) Fizika Goreniya i Vzryva 33(5):3

    CAS  Google Scholar 

  9. Hwang S, Mukasyan AS, Rogachev AS, Varma A (1997) Combust Sci Tech 123:165

    CAS  Google Scholar 

  10. Merzhanov AG, Peregudov AN, Gontkovskaya VT (1998) Doklady Akademii Nauk 360(2):217

    CAS  Google Scholar 

  11. Li HP (2003) Mater Chem Phys 80(3):758

    Article  CAS  Google Scholar 

  12. Rogachev AS, Merzhanov AG (1999) Doklady Akademii Nauk 365(6):788

    CAS  Google Scholar 

  13. Lakshmikantha MG, Bhattacharys A, Sekhar JA (1992) Metall Trans A 23A:23

    CAS  Google Scholar 

  14. Lakshmikantha MG, Sekhar JA (1993) Metall Trans A 24A:617

    CAS  Google Scholar 

  15. Lakshmikantha MG, Sekhar JA (1994) J Am Cream Soc 77(1):202

    Article  CAS  Google Scholar 

  16. Subramanian V, Lakshmikantha MG, Sekhar JA (1995) J Mater Res 10(5):1235

    CAS  Google Scholar 

  17. Li HP, Sekhar JA (1995) J Mater Sci 30(18):4628

    Article  CAS  Google Scholar 

  18. Li HP (2003) Mater Metall A 34A(9):1969

    CAS  Google Scholar 

  19. Li HP (2003) Mater Sci Eng A 345(1–2):336

    Google Scholar 

  20. Brain I, Knacke O, Kubaschewski O (1973) Thermochemical properties of inorganic substances, Springer-Verlag, New York, NY

    Google Scholar 

  21. Lide DR (1990) CRC handbook of chemistry and physics. CRC, Boca Raton, FL

    Google Scholar 

  22. Brandes EA, Brook GB (1992) Smithells metals reference book. Butterworth-Heinemann Ltd

  23. Li HP (2005) Mater Sci Eng A 392(1–2):262

    Google Scholar 

Download references

Acknowledgement

The support from National Center for High-Performance Computing (Account Number: u48hpl00) and National Science Council (Grant Number: NSC94-2216-E-228-001) in Taiwan are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H.P. A numerical study of the effect of heterogeneities in composition on micropyretic synthesis. J Mater Sci 42, 1177–1183 (2007). https://doi.org/10.1007/s10853-006-1450-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1450-4

Keywords

Navigation