Skip to main content
Log in

Solute adsorption and exclusion studies of the structure of never-dried and re-wetted cellulosic fibres

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The total water capacity of a series of never-dried and re-wetted cellulosic fibres has been shown to correlate with the accessible volume described by a thermodynamic model. The model was applied to interpret the adsorption behaviour of a range of reactive dyes in electrolyte solutions and was successful in accounting for differences in fibre anionic charge. Comparative solute exclusion data indicated the existence of a population of very small spaces in never-dried cellulosic fibres, which may be associated with water disrupting the cellulose \({1\overline{1}0}\) crystal planes. Such intra-crystalline spaces may provide sites for uptake of planar substantive dyes and may also be accessible to sodium ions. The study showed that never-dried lyocell undergoes a large reduction in total wet capacity following initial drying, which is believed to be due to both exudation of crystal water and to inter-fibrillar crystallisation. This crystallisation mechanism may not be so effective for viscose and modal, which have poorer structural organization. Re-wetted lyocell exhibits high dye adsorption, which may result from the development of a uniform fibrillar morphology with a high surface area. This structural aspect is not expressed by the thermodynamic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weigel P, Fink H-P, Walenta E, Ganster J, Remde H (1997) Cell Chem Technol 31:321

    CAS  Google Scholar 

  2. Kaenthong S, Phillips SAD, Renfrew AHM, Wilding AM (2005) Colouration Technol 120(6):316

    Google Scholar 

  3. Bredereck K, Stefani H-P, Beringer J, Schulz F, Commarmot A (2003) Melliand Textilberichte 84(1–2):58

    CAS  Google Scholar 

  4. Kaenthong S, Phillips SAD, Renfrew AHM, Wilding AM (2005) Colouration Technol 121(1):45

    Article  CAS  Google Scholar 

  5. Bredereck K, Gruber M, Utterbach A, Schulz F (1996) Textilveredlung 31:1

    Google Scholar 

  6. Vickerstaff T (1954) The physical chemistry of dyeing, Chap VII. Oliver and Boyd, London

  7. Vickers ME, Briggs PN, Ibbett RN, Payne J, Smith SB (2000) Polymer 42:241

    Google Scholar 

  8. Abbott LC, Batchelor NS, Jansen L, Oakes J, Lindsay-Smith RJ, Moore NJ (2004) New J Chem 28(7):815

    Article  CAS  Google Scholar 

  9. Sivaraja SR, Srinivasan G, Baddi TN (1968) Textile Res J (July):693

  10. Sasaki H, Donkai N, Takagishi T (2004) Textile Res J 74(6):509

    Article  Google Scholar 

  11. Bae S-H, Motomura H, Morita Z (1997) Dyes Pigments 34(1):37

    Article  CAS  Google Scholar 

  12. Marshall WJ, Peters HR (1947) J Soc Dyers Colourists 63:446

    CAS  Google Scholar 

  13. Daruwalla HE, D’Silva AP (1963) Textile Res J 59:40

    Article  Google Scholar 

  14. Sivarajalyer SR, Raghunath R (1989) Proc Natl Acad Sci India Sec A Phys Sci 59(1):37

    Google Scholar 

  15. Crawshaw J, Cameron ER (2000) Polymer 41(12):4691

    Article  CAS  Google Scholar 

  16. Moss CE, Butler EC, Muller M, Cameron RE (2002) J Appl Polym Sci 83:2799

    Article  CAS  Google Scholar 

  17. Bredereck K, Gruber M (1995) Melliand Textilberichte 76:684

    Google Scholar 

  18. Bredereck K, Schulz F, Otterbach A (1997) Mellian Textilberichte 78(10):103

    Google Scholar 

  19. Bredereck K, Saafan A (1981) Die Angewandte Makromolekulare Chemie 95:13 (Nr. 1482)

    Article  CAS  Google Scholar 

  20. Stone EJ, Scallan MA (1968) Cellulose Chem Technol 2:343

    CAS  Google Scholar 

  21. Stone EJ, Scallan MA, Abrahamson B (1968) Svensk Papperstidning 71(19):187

    Google Scholar 

  22. Peters RH, Vickerstaff T (1948) Proc Roy Soc (Lond) A192:292

  23. Carillo F, Lis JM (2002) Dyes Pigments 53:129

    Article  Google Scholar 

  24. Ibbett RN, Phillips AD, Kaenthong S (2006) Dyes Pigments 71:168

    Article  CAS  Google Scholar 

  25. Murtagh V, Taylor AJ (2004) Dyes Pigments 63:17

    Article  CAS  Google Scholar 

  26. Morton WE, Hearle SWJ (1993) Physical properties of textile fibres, 3rd edn, Chap 10. William Heinemann Ltd, in association with The Textile Institute

  27. Davidson GF (1948) J Textile Inst 39:T65

    Article  CAS  Google Scholar 

  28. Kaewprasit C, Hequet C, Abidi N, Gourlot J-P (1998) J Cotton Sci 2:164

    Google Scholar 

  29. Lin KJ, Ladisch HM, Patterson AJ, Noller HC (1987) Biotechnol Bioeng 29:976

    Article  CAS  Google Scholar 

  30. Gamma MF, Teixeira AJ, Mota M (1994) Biotechnol Bioeng 43:381

    Article  Google Scholar 

  31. Squire PG (1981) Chromatogr J 210:433

    Article  CAS  Google Scholar 

  32. Dork L, Sahagian D, Proussevitch A (1998) J Volcanol Geoth Res 84:173

    Article  Google Scholar 

  33. Fras L, Laine J, Stenius P, Stana K-Kleinschek, Ribitsch V, Dolece V (2004) J Appl Polym Sci 92:3186

    Article  CAS  Google Scholar 

  34. McGregor R (1972) Textile Res J 68:536

    Article  Google Scholar 

  35. Fink H-P, Weigel P, Purs JH, Ganster J (2001) Prog Polym Sci 26:1473

    Article  CAS  Google Scholar 

  36. Dube M, Blackwell HR (1983) TAPPI Proceedings of the international conference on dissolving and speciality pulps, Jan 1983

  37. Bredereck K (2005) Rev Prog Colouration 35:39

    Google Scholar 

  38. Peter H, Priest MH (1968) In: Mark HF, Atlas SM, Cernia E (eds) Man-made fibers: science and technology, Vol II, Chap 2. Interscience Publishers, New York

  39. Moncrief WR (1970) Man-made fibres, 5th edn, Chap 13. Haywood Books, London

  40. Fujita H (1990) Polymer solutions: studies in polymer science, Vol 9, Chap 10.2. Elisvier BV

  41. Ibrahim MD, Mondal H, Akira K (2001) . J Appl Polym Sci 79:1726

    Article  CAS  Google Scholar 

  42. Franks EN, Varga JK (1980) US Patent No. 4,196, April 1980, 282

  43. Lenz J, Schurz J, Eichinger D (1994) Lenziner Berichte 9:19

    Google Scholar 

  44. Lenz J, Schurz J, Wrentschur E (1992) Acta Polym 43:12

    Article  Google Scholar 

  45. Porter JJ (1993) Textile Chemist Colourist 25:4

    Google Scholar 

  46. Yang Y, Lan T, Li S (1995) Textile Chemist Colourist 27(2):29

    CAS  Google Scholar 

  47. Ibbett RN, Phillips AD, Kaenthong S (available online 28th Sept 2006) Dyes Pigments

Download references

Acknowledgements

The authors would like to thank The Christian Doppler Society for financial support, and also Lenzing AG, for financial support and for supply of fibre samples. Thanks also to Dr Christian Schuster for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Ibbett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibbett, R.N., Kaenthong, S., Phillips, D.A.S. et al. Solute adsorption and exclusion studies of the structure of never-dried and re-wetted cellulosic fibres. J Mater Sci 42, 6809–6818 (2007). https://doi.org/10.1007/s10853-006-1426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1426-4

Keywords

Navigation