Skip to main content
Log in

Elastic properties of powders during compaction. Part 2: elastic anisotropy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Isotropy in the elastic properties of powders undergoing uniaxial compaction in a cylindrical die was evaluated from in situ measurements of elastic wave speed. Shear and bulk longitudinal wave speeds were measured in both the axial (pressing) and radial directions. For the five different metal powders studied, wave speeds were generally higher in the axial direction. As such, the powder body was best described as a transversely isotropic material; complete isotropy was approached only when the powder was close to the loose packed state, or completely solid. Transversely isotropic elastic moduli analogous to the common isotropic ‘engineering’ moduli (Young’s modulus, Poisson’s ratio, etc.) were calculated by combining elastic wave speed measurements with the Saint-Venant approximation. Pseudo-isotropic elastic moduli (calculated from axial wave speed measurements and assuming elastic isotropy) were found to be only qualitatively similar to transversely isotropic elastic moduli for the axial plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. German RM (1994) Powder metallurgy science, 2nd edn. Metal Powder Industries Federation, New Jersey

    Google Scholar 

  2. Özkan N, Briscoe BJ (1997) Ceram Int 23:521

    Article  Google Scholar 

  3. Özkan N, Briscoe BJ (1997) J Eur Ceram Soc 17:697

    Article  Google Scholar 

  4. Deis TA, Lannutti JL (1998) J Am Ceram Soc 81:1237

    Article  CAS  Google Scholar 

  5. Rajab M, Coleman DS (1985) Powder Metall 28:207

    CAS  Google Scholar 

  6. Thompson RA (1981) Ceram Bull 60:237

    Google Scholar 

  7. Liu C-H, Nagel SR, Schecter DA, Coppersmith SN, Majumdar S, Narayan O, Witten TA (1995) Science 269:513

    Article  CAS  Google Scholar 

  8. Rice RW, Donahue TJ (1979) J Am Ceram Soc 62:306

    Article  CAS  Google Scholar 

  9. Dawson ALeR, Piché L, Hamel A (1996) Powder Metall 39:275

    CAS  Google Scholar 

  10. Hentschel ML (2002) PhD thesis, The University of Newcastle

  11. Meyers MA (1994) Dynamic behaviour of materials. Wiley, New York

    Google Scholar 

  12. Love AEH (1944) A treatise on the mathematical theory of elasticity, 4th edn. Dover, New York

    Google Scholar 

  13. Timoshenko SP, Goodier JN (1982) Theory of elasticity, 3rd edn. McGraw-Hill, Singapore

    Google Scholar 

  14. Boresi AP, Schmidt RJ, Sidebottom OM (1993) Advanced mechanics of materials, 5th edn. Wiley, New York

    Google Scholar 

  15. Hardin BO, Blandford GE (1989) J Geotech Engng 115:788

    Article  Google Scholar 

  16. Matikas TE, Kapur P, Shamasundar S (1997) J Mater Sci 32:1099

    Article  CAS  Google Scholar 

  17. Jones MP, Blessing GV (1988) In: McGonnagle WJ (ed) International advances in nondestructive testing, vol 13. Gordon & Breach, New York, p 175

    Google Scholar 

  18. Kathrina T, Rawlings RD (1997) J Eur Ceram Soc 17:1157

    Article  CAS  Google Scholar 

  19. Carnavas PC, Page NW (1998) J Mater Sci 33:4647

    Article  CAS  Google Scholar 

  20. Jones MP, Blessing GV (1987) In: Proceedings of 1987 IEEE ultrasonics symposium, vol 1186, p 587

  21. Kendall K (1990) Br Ceram Trans 89:211

    CAS  Google Scholar 

  22. Denny PJ (2002) Powder Technol 127:162

    Article  CAS  Google Scholar 

  23. Briscoe BJ, Rough SL (1998) Colloids Surfaces A 137:103

    Article  CAS  Google Scholar 

  24. Reed JS (1995) Principles of ceramic processing, 2nd edn. Wiley, New York

    Google Scholar 

  25. Rice RW (1998) Porosity of ceramics. Marcel Dekker, New York

    Google Scholar 

  26. Scarlett B, Van Der Kraan M, Janssen RJM (1998) Philos Trans R Soc Lond Ser A 356:2623

    Article  Google Scholar 

  27. Shima S, Saleh MAE (1993) J Am Ceram Soc 76:1303

    Article  CAS  Google Scholar 

  28. Boccaccini AR (1993) J Mater Sci Lett 12:43

    Article  Google Scholar 

  29. Zavaliangos A, Bouvard D (2000) Int J Powder Metall 30:58

    Google Scholar 

  30. Martin LP, Nagle D, Rosen M (1998) Mater Sci Eng A 246:151

    Article  Google Scholar 

  31. Parthasarathi S, Prucher T (1993) In: Proceedings of the 3rd international conference on powder metallurgy in aerospace, defence, and demanding applications, February 1993, p 75

  32. Krzesiñska M, Celzard A, Marêché JF, Puricelli S (2001) J Mater Res 16:606

    Google Scholar 

  33. Patterson BR, Miljus KL, Knoop WV (1984) Metal Powder Report 39:145

    Google Scholar 

  34. Laughton AS (1957) Geophysics 22:233

    Article  Google Scholar 

  35. Brettell JM (1990) J App Phys D 23:620

    Article  Google Scholar 

  36. Kupperman DS, Karplus HB (1984) Ceram Bull 63:1505

    CAS  Google Scholar 

  37. Bućko MM, Haberko K (1999) J Mater Sci 34:6157

    Article  Google Scholar 

  38. Mason WP (1958) Physical acoustics and the properties of solids. Van Nostrand, New Jersey

    Google Scholar 

  39. Worotnicki G (1993) In: Hudson JA (ed) Comprehensive rock engineering: principles, practice, and projects. Vol 3, Rock testing and site characterisation. Pergamon, Oxford

    Google Scholar 

  40. Amadei R (1996) Int J Rock Mech Min Sci Geomech Abstr 33:293

    Article  Google Scholar 

  41. Shafiro B, Kachanov M (1999) J Mech Phys Solids 47:877

    Article  CAS  Google Scholar 

  42. Zhao YH, Tandon GP, Weng GJ (1989) Acta Mech 76:105

    Article  Google Scholar 

  43. Duffy J (1959) Trans ASME J Appl Mech 25:88

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge scholarship support for MLH through the Australian Research Council Small Grants Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. W. Page.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hentschel, M.L., Page, N.W. Elastic properties of powders during compaction. Part 2: elastic anisotropy. J Mater Sci 42, 1269–1278 (2007). https://doi.org/10.1007/s10853-006-1394-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1394-8

Keywords

Navigation