Skip to main content
Log in

Experimental and numerical study of elastic behavior of heterogeneous model materials with spherical inclusions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The elastic properties of multi-phased materials have been studied in many papers, mainly focused on the analytical aspect of the problem (Voigt, Reuss, Hashin and Shtrikman...). For a few years, the large diffusion of FEM software offers, beside the analytical and experimental approaches, a new popular way to characterize the behavior laws of such materials. This work deals with two-phase model materials (spherical alumina inclusions in a vitreous matrix) whose linear elastic behaviors were determined by using the three previous approaches: analytical, experimental and numerical. Samples were elaborated with both various and controlled contents in second phase. The process consisted in determining their overall elastic characteristics starting from numerical 2D models, respecting the stereological relationships used in image analysis. After validation by comparison of the values obtained using four FEM software, the results were confronted with those given by analytical models so as with experimental ones. For the studied materials, experimental and numerical results are close to the lower bound of the Hashin and Shtrikman’s model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Burr A, Schmitt N, Berthaud Y (1993) Int. seminar on micromechanics of materials, 6–8 July 1993. MECAMAT93, Moret-sur Loing, France, pp 436–447

  2. Coster M, Chermant JL (1989) Précis d’analyse d’images. Edition du CNRS, Paris

    Google Scholar 

  3. Cutard T, Fargeot D, Gault C, Huger M (1994) J Appl Phys 75:1909

    Article  Google Scholar 

  4. Asmani M, Kermel C, Leriche A, Ourak M (2001) J Eur Ceram Soc 21:1081

    Article  CAS  Google Scholar 

  5. Glandus JC (1981) Rupture fragile et résistance aux chocs thermiques de céramiques à usage mécanique. PhD thesis, University of Limoges

  6. Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, Berlin

    Google Scholar 

  7. Reuss A (1929) Z angew Math u Mech 9:49

    Article  CAS  Google Scholar 

  8. Hashin Z (1962) J Appl Mech 29:143

    Article  CAS  Google Scholar 

  9. Hashin Z, Shtrikman S (1963) J Mech Phys Solids 11:127

    Article  Google Scholar 

  10. Sangani AS, Mo G (1997) J Mech Phys Solids 45:2001

    Article  Google Scholar 

  11. Kushch VI (1997) Int J Solids Struct 34:1353

    Article  Google Scholar 

  12. Mogilevskaya SG, Crouch SL (2001) Int J Numer Methods Eng 52:1069

    Article  Google Scholar 

  13. Crouch SL, Mogilevskaya SG (2003) Int J Numer Methods Eng 58:537

    Article  Google Scholar 

  14. Mogilevskaya SG, Crouch SL (2004) Int J Numer Methods Eng 41:1285

    Google Scholar 

  15. Fullman RL (1953) Trans AIME J Met 5:447

    CAS  Google Scholar 

  16. King RP (1996) Chem Eng J 62:1

    CAS  Google Scholar 

  17. Roberts AP (1997) Phys Rev E 56:3203

    Article  CAS  Google Scholar 

  18. Roberts AP, Garboczi EJ (1999) J Mech Phys Solids 47:2029

    Article  CAS  Google Scholar 

  19. Zhonghua L, Haicheng G (1990) Met Trans 21:717

    Article  Google Scholar 

  20. Jaensson BO, Sundström BO (1972) Mat Sci Eng 9:217

    Article  CAS  Google Scholar 

  21. Watson GS (1971) Biometrika 58:483

    Article  Google Scholar 

  22. Xu YH, Pitot HC (2002) Comput Methods Progr Biomed 00:1

    Google Scholar 

  23. Sahagian DL, Proussevitch AA (1998) J Volc Geo Res 84:173

    Article  CAS  Google Scholar 

  24. Ankem S, Margolin H (1982) Met Trans 13:595

    Article  CAS  Google Scholar 

  25. Watt JP, O’Connell RJ (1980) Phys Earth Planet Int 21:359

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Glandus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tessier-Doyen, N., Glandus, J.C. & Huger, M. Experimental and numerical study of elastic behavior of heterogeneous model materials with spherical inclusions. J Mater Sci 42, 5826–5834 (2007). https://doi.org/10.1007/s10853-006-1386-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1386-8

Keywords

Navigation