Skip to main content
Log in

A thermo-conductive approach to explain the origin of lamellar twisting in banded spherulites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermo-conductive and morphological considerations have led to the conclusion that ribbon-like crystals developed in the presence of thermal gradients behave in the same manner of macroscopic cantilevers, whose deformation in a non uniform temperature field is a deeply examined issue in the continuum mechanics. Therefore, the well known concepts and principles of this science have been applied to a lower scale (Pitteri M, Zanzotto G (2002) Continuum models for phase transitions and twinning in crystals, CRC Press, London) to explain the origin of lamellar twisting during the growth of optically banded spherulites in polymer samples squashed between glass surfaces. The developed model considers that the torsional motion of the lamellae is caused by the presence of thermal gradients across the thickness of the samples and accounts for both morphological and optical characteristics of polymer spherulites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pitteri M, Zanzotto G (2002) Continuum models for phase transitions and twinning in crystals, CRC Press, London

    Book  Google Scholar 

  2. Keller A (1957) Phil Mag 2:572

    Article  Google Scholar 

  3. Keller A (1955) J Polym Sci 17:291

    Article  CAS  Google Scholar 

  4. Bernauer F (1929) Forschungen zur Kristallkunde ed., Vol.2. Borntranger, Berlin

  5. Point JJ (1955) Bull Acad R Belg 41:982

    CAS  Google Scholar 

  6. Keller A (1959) J Polym Sci 39:151

    Article  CAS  Google Scholar 

  7. Keith HD, Padden FJ (1959) J Polym Sci 39:123

    Article  CAS  Google Scholar 

  8. Keller A (1984) In: March N, Tosi M (eds) Polymers, liquid crystals and low-dimensional solids. Plenum Press, New York and London

  9. Keith HD, Padden FJ Jr (1996) Macromolecules 29:7776

    Article  CAS  Google Scholar 

  10. Keith HD, Padden FJ Jr (1984) Polymer 25:28

    Article  CAS  Google Scholar 

  11. Singfield KL, Kloss JM, Brown GR (1995) Macromolecules 28:8006

    Article  CAS  Google Scholar 

  12. Owen AJ (1997) Polymer 38:3705

    Article  CAS  Google Scholar 

  13. Meille SV, Allegra G (1995) Macromolecules 28:7764

    Article  CAS  Google Scholar 

  14. Singfield KL, Brown GR (1995) Macromolecules 28:1290

    Article  CAS  Google Scholar 

  15. Snètivy D, Julius Vancso G (1994) Polymer 35:461

    Article  Google Scholar 

  16. Schultz JM, Kinloch DR (1969) Polymer 10:271

    Article  CAS  Google Scholar 

  17. Bassett DC, Olley RH, Al Raheil AM (1988) Polymer 29:539

    Google Scholar 

  18. Bassett DC, Vaughan AS (1985) Polymer 26:717

    Article  CAS  Google Scholar 

  19. Barham PJ, Keller A (1977) J Mater Sci 12:2141

    Article  CAS  Google Scholar 

  20. Foks J (1990) Polym Comm 31:255

    CAS  Google Scholar 

  21. Lovinger AJ, Chua JO, Gryte CC (1977) J Polym Sci Polym Physics 15:641

    Article  CAS  Google Scholar 

  22. Raimo M (2004) J App Polym Sci 94:2008

    Article  CAS  Google Scholar 

  23. Binsbergen FL, De Lange BGM (1970) Polymer 11:309

    Article  CAS  Google Scholar 

  24. Clark EJ, Hoffman JD (1984) Macromolecules 17:878

    Article  CAS  Google Scholar 

  25. Keith HD, Loomis TC (1984) J Polym Sci Polymer Phys Ed 22:295

    Article  CAS  Google Scholar 

  26. Bassett DC (1981) Principle of polymer morphology, chap. 2. University Press, Cambridge, p. 22

  27. Mase GE (1970) Continuum mechanics. McGraw-Hill Book Company, New York

  28. Landau LD, Lifšits EM (1979) Teoria dell’elasticità, 1st edn. Editori riuniti, Roma

  29. Raimo M, Cascone E, Martuscelli E (2001) J Mater Sci 36:3591

    Article  CAS  Google Scholar 

  30. Hobbs JK, Binger DR, Keller A, Barham PJ (2000) J Polym Sci Polymer Phys Ed 38:1575

    Article  CAS  Google Scholar 

  31. Barham PJ, Keller A, Otun EL, Holmes PA (1984) J Mater Sci 19:2781

    Article  CAS  Google Scholar 

  32. Grady BP, Genetti WB, Lamirand RJ, Shah M (2001) Polym Eng Sci 41:820

    Article  CAS  Google Scholar 

  33. Barrow GM (1961) Physical chemistry. Mc Graw-Hill, Inc., Italian translation of the 3th edition (1973), Zanichelli, Bologna, 1976, p.419

Download references

Acknowlwdgments

The author would like to thank eng. B. Pascucci for the useful discussion on the mechanics of deformation of beam and for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Raimo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raimo, M. A thermo-conductive approach to explain the origin of lamellar twisting in banded spherulites. J Mater Sci 42, 998–1003 (2007). https://doi.org/10.1007/s10853-006-1385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1385-9

Keywords

Navigation