Skip to main content
Log in

The tensile and creep behavior of Mg–Zn Alloys with and without Y and Zr as ternary elements

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tensile–creep experiments were conducted in the temperature range 100–200 °C and stress range 20–83 MPa for a series of magnesium–zinc–yttrium (Mg-Zn-Y) and mangnesium-zinc–zirconium (Mg-Zn-Zr) alloys ranging from 0 to 5.4 wt% Zn, 0 to 3 wt% Y, and 0 to 0.6 wt.% Zr. The greatest tensile–creep resistance was exhibited by an Mg–4.1Zn–0.2Y alloy. The room-temperature yield strength increased with increasing Y content for Mg–1.6–2.0Zn alloys. The greatest tensile strength and elongation was exhibited by Mg–5.4Zn–0.6Zr. This alloy also exhibited the finest grain size and the poorest creep resistance. The measured creep exponents and activation energies suggested that the creep mechanisms were dependent on stress. For applied stresses greater than 40 MPa, the creep exponents were between 4 and 8. For applied stresses less than 40 MPa, the creep exponent was 2.2. The calculated activation energies (Qapp) were dependent on temperature where the Q app values between 100 and 150 °C (65 kJ/mol) were half those between 150 and 200 °C for the same applied stress value (30 MPa). Deformation observations indicated that the grain boundaries were susceptible to cracking in both tension and tension-creep, where at low applied stresses grain boundary sliding was suggested where strain accommodation occurred through grain boundary cracking. Thus grain size and grain boundaries appeared to be important microstructural parameters affecting the mechanical behavior. Microstructural effects on the tensile properties and creep behavior are discussed in comparison to other Mg-based alloy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. All alloy compositions are given in weight percent unless otherwise mentioned.

References

  1. Zhu SM, Gao X, Nie JF (2004) Mater Sci Eng A384:270

    Article  CAS  Google Scholar 

  2. Moreno IP, Nandy TK, Jones JW, Allison JE, Pollock TM (2003) Scripta Mater 48:1029

    Article  CAS  Google Scholar 

  3. Baril E, Labelle P, Pekguleryuz MO (November 2003) J Metals:34

  4. Ozturk K, Zhong Y, Luo AA, Liu Z-K (November 2003) J Metals:40

  5. Rokhlin LL (2003) Magnesium alloys containing rare earth metals structure and properties. Taylor and Francis, New York, p 211

    Google Scholar 

  6. Moreno IP, Sohn KY, Jones JW, Allison JE (2001) Society of Automotive Engineers paper #2001-01-0425

  7. Sklenicka V, Pahutova M, Kucharova K, Svoboda M, Langdon TG (2002) Metall Trans 33A:883

    Article  CAS  Google Scholar 

  8. Luo AA, Powell BR (2001) In: Hryn JH (ed) Magnesium technology. The Materials Society, Warrendale, PA, pp 137–144

  9. Powell BR, Luo AA, Rezhets V, Bammarito JJ, Tiwari BL (2001) Society of Automotive Engineers paper #2001-01-0422

  10. Powell BR, Rezhets V, Balogh M, Waldo R (2001) In: Hryn JH (ed) Magnesium technology. The Materials Society, Warrendale, PA, pp 175–182

  11. Luo AA, MP Balogh, Powell BR (2001) Society of Automotive Engineers paper #2001-01-0423

  12. Luo AA, Shinoda T (1998) Society of Automotive Engineers paper #980086

  13. Maruyama K, Suzuki M, Sato H (2002) Metall Mater Trans 33A:875

    Article  CAS  Google Scholar 

  14. Suzuki M, Kimura T, Maruyama K, Oikawa H (1998) Mater Sci Eng A252:248

    Article  CAS  Google Scholar 

  15. Suzuki M, Inoue R, Sugihara M, Sato H, Koike J, Maruyama K, Oikawa H (2000) Mater Sci Forum 350–351:151

    Article  Google Scholar 

  16. Suzuki M, Kimura T, Koike J, Maruyama K (2003) Mater Sci Forum 426–432:593

    Article  Google Scholar 

  17. Suzuki M, Kimura T, Koike J, Maruyama K (2003) Scripta Mater 48:997

    Article  CAS  Google Scholar 

  18. Suzuki M, Kimura T, Koike J, Maruyama K (2004) Mater Sci Eng A387–389:706

    Article  Google Scholar 

  19. Sato T (1999) Mat B Jpn Inst Metals 38:294

    CAS  Google Scholar 

  20. Kawamura Y, Hayashi K, Inoue A, Masumoto T, (2001) Mater Trans 42:1172

    Article  CAS  Google Scholar 

  21. Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J (2001) J Mater Res 16:1894

    Article  CAS  Google Scholar 

  22. Inoue A, Matsushita M, Kawamura Y, Amiya K, Hayashi K, Koike J (2002) Mater Trans 43:580

    Article  CAS  Google Scholar 

  23. Abe E, Kawamura Y, Hayashi K, Inoue A (2002) Acta Mater 50:3845

    Article  CAS  Google Scholar 

  24. Ping DH, Hono K, Kawamura Y, and Inoue A (2002) Phil Mag Lett 82:543

    Article  CAS  Google Scholar 

  25. Nishida M, Kawamura Y, Yamamuro T (2004) Mater Sci Eng A375–377:1217

    Article  Google Scholar 

  26. Watanabe H, Mukai T, Ishikawa K, Mabuchi M, Higashi K (2001) Mater Sci Eng A307:119

    Article  CAS  Google Scholar 

  27. Watanabe H, Mukai T, Higashi K (1988) Superplastic forming. The Minerals, Metals, and Materials Society, Warrendale, PA, p 179

    Google Scholar 

  28. Standard Test Methods for Determining Grain Size Designation E 112–88 (1988) American Society for Testing and Materials (ASTM), West Conshohocken, PA, pp 228–253

  29. ASM Handbook (1992) Alloys and phase diagrams (vol 3). ASM International, Materials Park, OH, p 285

  30. Emley EF (1966) Principles of magnesium technology, 1st edn. Pergamon Press, Oxford, New York

    Google Scholar 

  31. Dargusch MS, Dunlopm GL (1998) In: Mordike BL, Kainer KU (ed) Magnesium alloys and their applications. Werkstoff-Informationsgesellschaft, Frankfurt, Germany, pp 277–282

  32. Mordike RL, Lukac P (1997) Proceedings of the 3rd International Magnesium Conference. The Institute of Metals, London, England, pp 419–429

  33. Regev M, Aghion E, Rosen A, Bamberger M (1998) Mater Sci Eng A252:6

    Article  CAS  Google Scholar 

  34. Regev M, Aghion E, Rosen A (1997) Mater Sci Eng A234–236:123

    Article  Google Scholar 

  35. Uchida H, Shinya T (1995), J Jpn Inst Light Metals 45(10): 572

    Article  Google Scholar 

  36. Dieter GE (1986) Mechanical metallurgy. McGraw-Hall, New York, NY, pp 432

    Google Scholar 

  37. Vagarali SS, Langdon TG (1982) Acta Metall 30:1157

    Article  CAS  Google Scholar 

  38. Blum W, Watzinger B, Weidinger P (1998) In: Mordike BL, Kainer KU (eds) Magnesium alloys and their applications. Werkstoff-Informationsgessellschaft mbH, Frankfurt, Germany, pp 49–60

  39. Watzinger B, Weidinger P, Breutinger F, Blum W, Rosch R, Lipowsky H, Haldenwanger H-G (1998) In: Mordike BL, Kainer KU (eds) Magnesium alloys and their applications. Werkstoff-Informationsgessellschaft mbH, Frankfurt, Germany, pp 259–264

Download references

Acknowledgements

This work was partially supported by the National Science Foundation through grant DMR-0320992. The authors are grateful to Dr. Christopher Cowen and Messieurs Ken Knittel Daniel Burnett III, Matthew Dispenza and John Rich for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Boehlert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boehlert, C.J. The tensile and creep behavior of Mg–Zn Alloys with and without Y and Zr as ternary elements. J Mater Sci 42, 3675–3684 (2007). https://doi.org/10.1007/s10853-006-1352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1352-5

Keywords