Skip to main content
Log in

Study on dielectric ageing behaviour of antiferroelectric (Pb1−xBax)ZrO3 (0≤x≤0.10) ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ageing phenomena on dielectric constant and dielectric losses of pure and compositionally modified PbZrO3 by Ba2+ ions are presented both in antiferrolelectric and ferroelectric phases. It is shown that the room temperature stable antiferroelectric phase of the samples gets inhibited on cooling after a heating cycle. The phase recovers from metastable ferroelectric phase on long-term ageing at room temperature. The antiferroelectric (Pb1−xBax)ZrO3 system having higher internal stress has a great driving force for higher ageing rate. It is also shown that the ageing process is more pronounced if the sample is thermally activated and the room temperature ageing leads to linear dependence of dielectric constant and dielectric losses upon logarithmic of time. It is proposed that the decrease in dielectric constant with time is due to the motion of domain walls coming from the domain nucleation as well as the stress relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schulze WA, Ogino K (1988) Ferroelectrics 87:361

    Article  Google Scholar 

  2. Mark BH (1948) Electronics 21:116

    Google Scholar 

  3. Roup RR (1950) Bull Am Ceram Soc 29:160

    CAS  Google Scholar 

  4. Misarova A (1960) Solid State Phys 2:1276

    Google Scholar 

  5. Cooke FW, Bradt RC, DeVries RC, Ansell GS (1966) J Am Ceram Soc 49:648

    Article  CAS  Google Scholar 

  6. Sawaguchi ES, Charters ML (1959) J Am Ceram Soc 42:157

    Article  CAS  Google Scholar 

  7. Bradt RC, Ansell GS (1969) J Am Ceram Soc 52:192

    Article  CAS  Google Scholar 

  8. Vincent E, Alet F, Alba M, Hammann J, Ocio M, Bouchaud JP (2000) Physica B 280:260

    Article  CAS  Google Scholar 

  9. Fisher DS, Huse DA (1988) Phys Rev B38:386

    Article  Google Scholar 

  10. Mitoseriu L (2002) Fizica Starii Condensate XLVIII:51

    Google Scholar 

  11. Miga S, Dec J, Kleemann W, Pankrath R (2004) Phys Rev B 70:134108

    Article  Google Scholar 

  12. Kircher O, Bohmer R (2002) Eur Phys J B 26:329

    CAS  Google Scholar 

  13. Alberici F, Doussineau P, Levelut (1997) J Phys I 7:329

    CAS  Google Scholar 

  14. Pokharel BP, Pandey D (1999) J Appl Phys 86:3327

    Article  CAS  Google Scholar 

  15. Pokharel BP, Pandey D (2000) J Appl Phys 88:5364

    Article  CAS  Google Scholar 

  16. Yoon KH, Hwang SC, Kang DH (1997) J Mater Sci 32:17, DOI: 10.1023/A: 1018654423330

  17. Pan WY, Zhang Q, Dam CW, Cross LE (1989) J Appl Phys 66:6014

    Article  CAS  Google Scholar 

  18. Park S, Pan M, Markoski K, Yoshikawa S, Cross LE (1997) J Appl Phys 82:1798

    Article  CAS  Google Scholar 

  19. Pokharel BP, Dutta M, Pandey D (1999) J Mater Sci 34:691, DOI: 10:1023/A: 1004552308815

  20. Bongkarn T, Rujijanagul G, Milne SJ (2005) Mater Lett 59:1200

    Article  CAS  Google Scholar 

  21. Goulpeau L (1967) Sov Phys Solid State 8:1970

    Google Scholar 

  22. Handerek J, Pisarski M, Uzma Z (1981) J Phys C 14:2007

    Article  CAS  Google Scholar 

  23. Pokharel BP, Pandey D (2001) J Appl Phys 90:2985

    Article  CAS  Google Scholar 

  24. Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Clarendon Press, Oxford, p 156

    Google Scholar 

  25. Jaffe B, Cooke WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London, p 201

    Google Scholar 

  26. Zou Meng JG, Zhu Z, Du Z (1994) Solid State Commun 91:519

    Article  Google Scholar 

  27. Ruan L, Wang Y, Gui Z, Li L (1997) J Mater Sci: Mater Electron 8:195

    CAS  Google Scholar 

  28. Zhang QM, Zhao J, Cross LE (1996) J Appl Phys 79:3181

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. B. P. Pokharel would like to thank The Abdus Salam International Centre for Theoretical Physics and SIDA, Trieste for providing academic facilities. This project was supported in part by a grant from the Third World Academy of Sciences (TWAS), Trieste, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhadra Prasad Pokharel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokharel, B.P., Pandey, D. Study on dielectric ageing behaviour of antiferroelectric (Pb1−xBax)ZrO3 (0≤x≤0.10) ceramics. J Mater Sci 42, 10239–10244 (2007). https://doi.org/10.1007/s10853-006-1305-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1305-z

Keywords

Navigation