Skip to main content

Kinetics, mechanism and modelling of microstructural evolution during thermomechanical processing of a 15Cr–15Ni–2.2Mo–Ti modified austenitic stainless steel


The paper discusses the kinetics, mechanism and modelling of the microstructural evolution of a 15Cr–15Ni–2.2Mo–0.3Ti modified austenitic stainless steel (alloy D9) during dynamic recrystallization (DRX). The experimental methodology included different hot working operations employing industrial equipment such as forge hammer, hydraulic press and rolling carried out in the temperature range 1,173–1,473 K to various strain levels. The kinetics of DRX has been investigated employing modified Johnson–Mehl–Avrami–Kolmogorov (JMAK) model. It has been found that the value of Avrami exponent varies in a close range of 1.17–1.34 which implies that D9 exhibits growth controlled DRX. Optical metallography has revealed that nucleation of DRX grains occurred along the prior grain boundaries by bulging mechanism. Microstructural characterization has shown that a significant correlation between microstructural features and processing parameters exists. However, this interrelation is ambiguous and fuzzy in nature. Therefore an artificial neural network model has been developed to predict the microstructural features, namely fraction of DRX and grain size, at different processing conditions. A good correlation between experimental findings and predicted results has been obtained. An instantaneous microstructure, therefore, can be designed in order to optimize the process parameters based on microstructural evolution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Mannan SL, Sivaprasad PV (2001) In: Jurgen Buschow KH, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S (eds) Encyclopedia of materials science and technology, vol 3. Elsevier, New York, pp 2857–2865

  2. Venkadesan S, Sivaprasad PV, Narayanan C, Shanmugam V (1992) In: Rao PK et al (eds) Proceedings of the international conference on stainless steels INCOSS-89, Ind Inst Metals, Bombay, Feb 1989. Omega Scientific Publishers, New Delhi, pp 345-360

  3. Wang X, Brunger E, Gottstein G (2002) Scr Mater 46:875

    Article  CAS  Google Scholar 

  4. Belyakov A, Miura H, Sakai T (2000) Scr Mater 43:21

    Article  CAS  Google Scholar 

  5. Sivaprasad PV (1997) PhD Thesis, IIT Bombay

  6. Miaoquan L, Aiming X, Weichao H (2003) Mater Character 49:203

    Google Scholar 

  7. Sakai T, Ohashi M, Chaiba K (1988) Acta Metal 36(7):1781

    Article  CAS  Google Scholar 

  8. Liu WC, Morris JG (2005) Mater Sci Eng A 402:215

    Article  Google Scholar 

  9. Weiping Y, Gall RL, Saindrenan G (2002) Mater Sci Eng A 332:41

    Article  Google Scholar 

  10. Prasad YVRK, Ravichandran N (1991) Bull Mater Sci 14:1241

    Article  CAS  Google Scholar 

  11. Mandal S, Sivaprasad PV, Venugopal S, Murthy KPN (2006) Modelling Simul Mater Sci Eng 14:1053

    Article  CAS  Google Scholar 

  12. Venugopal S, Sivaprasad PV, Venkadesan S, Effect of annealing temperature on engineering properties of alloy D9, unpublished work

  13. Wahabi M, Cabrera JM, Prado JM (2003) Mater Sci Eng A 343:116

    Article  Google Scholar 

  14. Sivaprasad PV, Mannan SL, Prasad YVRK, Chaturvedi RC (2002) Mater Sci Technol 17:545

    Article  Google Scholar 

  15. Sakai T, Jonas JJ (1984) Acta Metal 32(2):189

    Article  CAS  Google Scholar 

  16. Ponge D, Gottstein G (1998) Acta Mater 46(1):69

    Article  CAS  Google Scholar 

  17. Karduck P, Gottstein G, Mecking H (1983) Acta Mater 31:1525

    Article  CAS  Google Scholar 

  18. Brunger E, Wang X, Gottstein G (1998) Scr Mater 38(12):1843

    Article  CAS  Google Scholar 

  19. Hasegawa M, Yamamoto M, Fukutomi H (2003) Acta Mater 51:3939

    Article  CAS  Google Scholar 

  20. Barrett CS, Levenson LH (1940) Trans AIME 137:112

    Google Scholar 

  21. Hasegawa M, Fukutomi H (2002) Mater Trans 43:2243

    Article  CAS  Google Scholar 

  22. Gottstein G (1984) Acta Metal 32:1117

    Article  CAS  Google Scholar 

  23. Wang X, Brunger E, Gottstein G (2002) Scr Mater 46:875

    Article  CAS  Google Scholar 

  24. Juang SC, Tarang YS, Lii HR (1998) J Mater Process Technol 75:54

    Article  Google Scholar 

  25. Reidimiller M, Braun H (1993) Proceedings of the international conference in neural networks, San Francisco, CA

  26. Reidimiller M (1994) Special issue on Neural Netw 5

  27. Tollenaere T (1990) Neural Netw 3(5):561

    Article  Google Scholar 

  28. Olden JD, Jackson DA (2002) Ecol Model 154:135

    Article  Google Scholar 

  29. Gevrey M, Dimopoulos I, Lek S (2003) Ecol Model 160:249

    Article  Google Scholar 

  30. Garson GD (1991) Artif Intell Expert 6:47

    Google Scholar 

Download references


The authors would like to express their sincere thanks to Dr. S. Venugopal, Head, Metal Forming & Tribology Section and Dr. S.K. Ray, Head, Materials Technology Division for useful discussions. The authors also gratefully acknowledge Dr. S.L. Mannan, Director, Metallurgy & Materials Group and Dr. Baldev Raj, Director, Indira Gandhi Centre for Atomic Research (IGCAR) for their constant encouragement throughout the course of this work. The authors also thank the reviewers for making very useful suggestions/comments.

Author information

Authors and Affiliations


Corresponding author

Correspondence to P. V. Sivaprasad.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mandal, S., Sivaprasad, P.V. & Dube, R.K. Kinetics, mechanism and modelling of microstructural evolution during thermomechanical processing of a 15Cr–15Ni–2.2Mo–Ti modified austenitic stainless steel. J Mater Sci 42, 2724–2734 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Artificial Neural Network
  • Microstructural Evolution
  • Austenitic Stainless Steel
  • Orientation Image Microscopy
  • Electron Back Scatter Diffraction