Skip to main content
Log in

Correlating yield response with molecular architecture in polymer glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The yield response of nine architecturally different glassy networks is investigated under several stress states, strain rates, and temperatures, and correlations are made among them. Differences in molecular architecture are quantified through two proposed governing parameters; the glass transition temperature, T g, capturing network stiffness and the cohesive energy density, E c, reflecting network strength. Cohesive energy density is estimated using molecular modeling techniques and supported by solvent swelling experiments. The limits of the correlations made between molecular architecture and yield behavior are further studied with attempts to relate yielding in thermoplastic glasses and heterogeneous networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. www.freedoniagroup.com/Epoxy-Resins-In-North-America.html

  2. Sternstein SS, Ongchin L (1969) ACS Polym Prep 10:1117

    CAS  Google Scholar 

  3. Sultan JN, McGarry FJ (1973) Polym Eng Sci 13:29

    Article  CAS  Google Scholar 

  4. Carapellucci LM, Yee AF (1986) Polym Eng Sci 26:920

    Article  CAS  Google Scholar 

  5. Kinloch AJ, Young RJ (1983) Fracture behavior of polymers. Applied Science Publishers, London, pp 116–117, 172

  6. Robertson RE (1966) J Chem Phys 44:3950

    Article  Google Scholar 

  7. Duckett RA, Rabinowitz S, Ward IM (1970) J Mater Sci 9:909

    Article  Google Scholar 

  8. Sha Y, Hui CY, Ruina A, Kramer EJ (1995) Macromolecules 28:2450

    Article  CAS  Google Scholar 

  9. Baljon ARC, Robbins MO (2001) Macromolecules 34:4200

    Article  CAS  Google Scholar 

  10. Chui C, Boyce MC (1999) Macromolecules 32:3795

    Article  CAS  Google Scholar 

  11. Yang L, Srolovitz DJ, Yee AF (1997) J Chem Phys 107:4396

    Article  CAS  Google Scholar 

  12. Rottler J, Robbins MO (2001) Phys Rev E 64:051801

    Article  CAS  Google Scholar 

  13. Theodorou DN, Suter UW (1986) Macromolecules 19:139

    Article  CAS  Google Scholar 

  14. Hertzberg R (1989) Deformation and fracture mechanics of engineering materials, 3rd edn. John Wiley and Sons, New York

    Google Scholar 

  15. Crawford E, Lesser AJ (1998) J Polym Sci Part B: Pol Phys 36:1371

    Article  CAS  Google Scholar 

  16. Crawford E, Lesser AJ (1997) J Appl Polym Sci 66:387

    Article  Google Scholar 

  17. Graessley WW (1975) Macromolecules 8:186

    Article  CAS  Google Scholar 

  18. Flory PJ (1979) Polymer 20:1317

    Article  CAS  Google Scholar 

  19. Lesser AJ, Calzia KJ (2004) J Polym Sci Part B: Pol Phys 42:2050

    Article  CAS  Google Scholar 

  20. Calzia KJ, Lesser AJ (2004) Abstr Pap Am Chem Soc 227:471-PMSE Part 2

  21. Calzia KJ, Lesser AJ (2004) SPE ANTEC Tech Papers, 50

  22. van Krevelen DW (1976) Properties of polymers, 2nd edn. Elsevier, Amsterdam, pp 129–159

  23. Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Oxford University Press, Oxford

    Google Scholar 

  24. Kody RS, Lesser AJ (1997) J Mater Sci 32:5637

    Article  CAS  Google Scholar 

  25. Donnellan TM (1992) J Polym Eng Sci 32:415

    Article  CAS  Google Scholar 

  26. MacKinnon AJ (1995) J Polym Sci Part B: Pol Phys 58:2345

    CAS  Google Scholar 

  27. Cook WD (1999) Polymer 40:1209

    Article  CAS  Google Scholar 

  28. Sindt O, Perez, J (1996) Polymer 37:2989

    Google Scholar 

  29. Chaplin RP (1994) Polymer 35:752

    Article  Google Scholar 

  30. Ober CK, Kramer EJ (1998) Macromolecules, 31:40

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Center for UMass/Industrial Research in Polymers (CUMIRP) Cluster M that receives support from Essilor, International Paper, Loctite, and Meadwestvaco. In addition, they thank the Army Research Labs and the National Science Foundation for their support of the Materials Research Science and Engineering Center (MRSEC). They also would like to acknowledge Dow Chemical for the plane strain test results and funding.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calzia, K.J., Lesser, A.J. Correlating yield response with molecular architecture in polymer glasses. J Mater Sci 42, 5229–5238 (2007). https://doi.org/10.1007/s10853-006-1268-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1268-0

Keywords

Navigation