Skip to main content
Log in

Effect of 80 MeV oxygen ion beam irradiation on the properties of CdTe thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polycrystalline CdTe thin films were irradiated with 80 MeV oxygen (O6+) ions for various fluences and its effect on the composition, structure, surface topography and optical properties have been investigated. The as-grown films are found to be slightly Te-rich in composition and there is no significant change in the composition after irradiation. X-ray diffraction analysis shows a high degree of crystallite orientation along the (111) plane of cubic phase CdTe. Upon irradiation a large decrease in intensity of the (111) plane and a small shift in the peak position has been resulted. The shift in the peak position is correlated with the change in the residual stress. The surface roughness of the films get increased after irradiation. A decrease in the grain size was observed after irradiation due to ion-induced recrystallization. The optical band gap energy decreased from 1.53 eV for as-grown film to 1.46 eV upon irradiation. The photoluminescence (PL) spectrum is dominated by the defect band and the effect of irradiation has been discussed and correlated with the observed change in the XRD peak position and optical band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leal FF, Ferreira SO, Menezes-Sobrinho IL, Faria TE (2005) J Phys Condens Matter 17:27

    Article  CAS  Google Scholar 

  2. Cavallini A, Fraboni B, Dusi W, Hage-Ali M, Siffert P (2001) J Appl Phys 89:4664

    Article  CAS  Google Scholar 

  3. Rams J, Sochinskii NV, Munoz V, Cabrera JM (2000) Appl Phys A Mater Sci Process 71:277

    Article  CAS  Google Scholar 

  4. Oladeji IO, Chow L, Ferekides CS, Viswanathan V, Zhao Z (2000) Sol Energy Mater Sol Cells 61:203

    Article  CAS  Google Scholar 

  5. Aguilar M, Oliva AI, Castro-Rodriguez R, Pena JL (1997) J Mater Sci Mater Electron 8:103

    Article  CAS  Google Scholar 

  6. Wu X, Keane JC, Dhere RG, Dettart C, Albin DS, Duda A, Gessert TA, Asher S, Levi DH, Sheldon P (2001) In: Proc of the 17th European Photovoltaic Solar Energy Conf., Munich, Germany, p 995

  7. Vamsi krishna K, Dutta V (2004) J Appl Phys 96:3962

    Article  Google Scholar 

  8. Schattat B, Bolse W, Elsanousi A, Renz T (2005) Nucl Instrum Methods Phys Res B 230:240

    Article  CAS  Google Scholar 

  9. Senthilarasu S, Sathyamoorthy R, Lalitha S, Avasthi DK (2005) Thin Solid Films 490:177

    Article  CAS  Google Scholar 

  10. Avasthi DK, Assmann W, Nolte H, Mieskes HD, Huber H, Subramaniyan ET, Tripathi A, Ghosh S (1999) Nucl Instrum Methods Phys Res B 156:143

    Article  CAS  Google Scholar 

  11. Sreekumar R, Ratheesh Kumar PM, Sudha Kartha C, Vijayakumar KP, Kabiraj D, Khan SA, Avasthi DK (2006) Nucl Instrum Methods Phys Res B 244:190

    Article  CAS  Google Scholar 

  12. Romeo A, Batzner DL, Zogg H, Tiwari AN (2001) Mat Res Soc Symp Proc 668:H3.3.1

    Article  Google Scholar 

  13. Batzner DL, Romeo A, Terheggen M, Dobeli M, Zogg H, Tiwari AN (2004) Thin Solid Films 451–452:536

    Article  Google Scholar 

  14. Ratheesh Kumar PM, Sudha Kartha C, Vijaya Kumar KP, Singh F, Avasthi DK, Abe T, Kashiwaba Y, Okram GS, Kumar M, Kumar S (2005) J Appl Phys 97:013509

    Article  Google Scholar 

  15. Balamurugan B, Mehta BR, Avasthi DK, Singh F, Arora AK, Rajalakshmi M, Raghavan G, Tyagi AK, Shivaprasad SM (2002) J Appl Phys 92:3304

    Article  CAS  Google Scholar 

  16. Kamboj MS, Kaur G, Thangaraj R, Avasthi DK (2002) J Phys D Appl Phys 35:477

    Article  CAS  Google Scholar 

  17. Ratheesh Kumar PM, John TT, Sudha Kartha C, Vijayakumar KP (2006) Nucl Instrum Methods Phys Res B 244:171

    Article  Google Scholar 

  18. Jayavel P, Arokiaraj J, Soga T (2002) Semicond Sci Technol 17:969

    Article  CAS  Google Scholar 

  19. Chaudhary YS, Khan SA, Shrivastava R, Satsangi VR, Prakash S, Avasthi DK, Dass S (2004) Nucl Instrum Methods Phys Res B 225:291

    Article  CAS  Google Scholar 

  20. Ohring M (1992) In: The materials science of thin film. Academic Press, San Diego

  21. Mountinho HR, Al-Jassim MM, Abufoltuh FA, Levi DH, Dippo PC, Dhere RG, Kazmerski LL (1997) NREL/CP-523–22944

  22. Bhattacharya B, Carter MJ (1996) Thin Solid Films 288:176

    Article  Google Scholar 

  23. Rawat RS, Arun P, Vedeshwar AG, Lee P, Lee S (2004) J Appl Phys 95:7725

    Article  CAS  Google Scholar 

  24. Senthil K, Mangalaraj D, Narayandass SAK, Kesavamoorthy R, Reddy GLN, Sundaravel B (2001) Physica B 304:175

    Article  CAS  Google Scholar 

  25. Contreras-Puente G, Vigil-Galan O, Vidal-Varramendi J, Cruz-Gandarilla F, Hesiquio-Garduno M, Aguilar-Hernandez J, Cruz-Orea A (2001) Thin Solid Films 387:50

    Article  CAS  Google Scholar 

  26. Li K, Wee ATS, Linj J, Tan KL, Zhou L, Li SFY, Feng ZC, Chou HC, Kamra S, Rohatgi A (1997) J Mater Sci Mat Electron 8:125

    Article  CAS  Google Scholar 

  27. Narayanan KL, Vijayakumar KP, Nair KGM, Thampi NS (1997) Physica B 240:8

    Article  CAS  Google Scholar 

  28. El-Sayed SM (2004) Nucl Instrum Methods Phys Res B 225:535

    Article  CAS  Google Scholar 

  29. Bridge CJ, Dawson P, Buckle PD, Ozsan ME (2000) Semicond Sci Technol 15:975

    Article  CAS  Google Scholar 

  30. Seto S, Yamada S, Suzuki K (2001) Sol Energy Mater Sol Cells 67:167

    Article  CAS  Google Scholar 

  31. Ahmad-Bitar R, Moutinho H, Abulfotuh F, Kazmerski L (1995) Renew Energy 6:553

    Article  CAS  Google Scholar 

  32. Aguilar-Hernandez J, Contreras-Puente G, Vidal-Larramendi J, Vigil-Galan O (2003) Thin Solid Films 426:132

    Article  CAS  Google Scholar 

  33. Mathew X, Arizmendi JR, Campos J, Sebastian PJ, Mathews NR, Jimenez CR, Jimenez MG, Silva-Gonzales R, Hernandez-Torres ME, Dhere R (2001) Sol Energy Mater Sol Cells 70:379

    Article  CAS  Google Scholar 

  34. Ahmad-Bitar R, Arafah DE (1998) Sol Energy Mater Sol Cells 51:83

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Inter University Accelerator Centre (IUAC), New Delhi, India through the Project UFUP 34319. The authors cordially acknowledge the help extended by technical staff of Pelletron group during the irradiation experiment. The authors wish to acknowledge Mr. Ambuj Tripathi, Scientist, Inter University Accelerator Centre, New Delhi for his support to carryout the AFM measurements and Dr. D. M. Phase, Scientist and Mr. Vinay Ahire, Junior engineer, UGC-DAE Consortium for Scientific Research, Indore Centre for EDA analysis. One of the authors (RS) gratefully acknowledges University Grants Commission (UGC), New Delhi for awarding UGC-Research Award [Project No. F-30-1/2004 (SA-II)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sathyamoorthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sathyamoorthy, R., Chandramohan, S., Sudhagar, P. et al. Effect of 80 MeV oxygen ion beam irradiation on the properties of CdTe thin films. J Mater Sci 42, 6982–6988 (2007). https://doi.org/10.1007/s10853-006-1248-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1248-4

Keywords

Navigation