Skip to main content
Log in

Multi-technique and multi-scale approach applied to study the structural behavior of heterogeneous materials: natural SiO2 case

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A multi-technique and multi-scale approach have been initiated to study the structural properties of a natural heterogeneous material. This approach has led us to introduce the concepts of long-range order LRO and short-range order SRO. The correlation between these concepts has enabled us to advance in the comprehension of the mechanisms of degradation of natural SiO2 aggregate submitted to the process of the alkali–silica reaction (ASR). On LRO scale, the structural changes of the aggregate are revealed by the reduction of the size of grains, which means that the attack starts by affecting amorphous and poorly crystallized zones. This phenomenon generates the formation of very unstable amorphous and nanocrystallized products, which take part in the degradation of the aggregate. On SRO scale tetrahedral environment of silicon atoms is preserved in spite of the introduction of OH- ions with a relaxation phenomenon. The second layer of coordination around silicon remains almost unchanged. These results add new information showing that ASR must be considered as a multi-scale process. The methodology itself may be extended to other problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. De Almaida P, Van Deelen J, Catry C, Sneyers H, Pataki T, Andriessen R, Van Roost C, Kroon JM (2004) Appl Phys A 79:1819

    Article  Google Scholar 

  2. Chatterji S, Jensen AD, Thaulow N, Christensen P (1986) Cement Concrete Res 16:246

    Article  CAS  Google Scholar 

  3. Wang H, Gillot JE (1991) Cement Concrete Res 21:647

    Article  CAS  Google Scholar 

  4. Brouxel M (1993) Cement Concrete Res 23:309

    Article  CAS  Google Scholar 

  5. Poole AB (1992) In: Proceedings of the 9th international conference on alkali-aggregate reaction, London (England). Concrete Society Publications Cs 104 1, p 782

  6. Chatterji S, Thaulow N (2000) In: Berube MA et al (ed) Proceedings of the 11th international conference on alkali-aggregate reaction in concrete, Quebec (Canada), p 21

  7. Verstraete J, Khouchaf L, Bulteel D, Garcia E-D, Flank AM, Tuilier MH (2004) Cement Concrete Res 34:581

    Article  CAS  Google Scholar 

  8. Verstraete J, Khouchaf L, Tuilier MH (2004) J Mater Sci 39:20–6221

    Article  Google Scholar 

  9. Khouchaf L, Verstraete J, Prado RJ, Tuilier MH (2005) Phys Scripta T115:552

    Article  CAS  Google Scholar 

  10. Grattan PE-Bellew, Beaudoin JJ, Vallée VG (1998) Cement Concrete Res 28:8

    Google Scholar 

  11. Ersen O, Pierron-Bohnes V, Tuilier MH, Pirri C, Khouchaf L, Gailhanou M (2003) Phys Rev B 67:094116

    Article  Google Scholar 

  12. Elliott SR (1991) Nature 354:445

    Article  CAS  Google Scholar 

  13. Danilatos GD (1988) In: Fundations of environmental microscopy advances in electronics and electron physics, vol 71. Academic, New York, p 109

  14. Khouchaf L, Verstraete J (2002) J Phys Iv 12:341

    CAS  Google Scholar 

  15. Khouchaf L, Verstraete J (2004) J Phys Iv 118:237

    CAS  Google Scholar 

  16. Lagarde P, Flank AM (1993) J-P Itié J Appl Phys 32:613

    Article  CAS  Google Scholar 

  17. Li D, Bancroft GM, Kasrai M, Fleet ME, Feng XH, Tan KH, Yang BX (1993) Solid State Commun 87(7):613

    Article  CAS  Google Scholar 

  18. Li D, Bancroft GM, Kasrai M, Fleet ME, Secco RA, Feng XH, Tan KH, Yang BX (1994) Am Mineral 79:622

    CAS  Google Scholar 

  19. Khouchaf L, Tuilier MH, Guth JL, Elouadi B (1996) J Phys Chem Solids 57:251

    Article  CAS  Google Scholar 

  20. Levelut C, Cabaret D, Benoit M, Jund P, Flank A-M (2001) J Non-Crystalline Solids 293–295:100

    Article  Google Scholar 

  21. Kurtis KE, Monteiro PJM, Brown JT, Meyer-Ilse W (1998) Cement Concrete Res 28(3):411

    Article  CAS  Google Scholar 

  22. Michalovicz A (1991) In Logiciels Pour La Chimie. Société Française De Chimie, Paris, p102

  23. Devine RAB, Duraud JP, Dooryhee E (2000) In: Structure and imperfection in amorphous and crystalline silicon dioxide. Wiley, New York, p 396

  24. Xie XQ, Ranade SV, Dibenedetto AT (1999) Polymer 40:6297

    Article  CAS  Google Scholar 

  25. Gendron-Badou A, Coradin T, Maquet J, Frohlich F, Livage J (2003) J Non-Crystalline Solids 316:331

    Article  CAS  Google Scholar 

  26. Mehta PK, Monteiro PJM (1993) In concrete: structure, properties, and materials. Prentice Hall, Englewood Cliffs

    Google Scholar 

  27. Liang T, Meihua W, Sufen H, Mingshu H (1997) Adv Cement Res 9(34):55

    Article  CAS  Google Scholar 

  28. Klug HP, Alexander LE (1959) In: X-ray diffraction procedures for polycrystalline and amorphous materials, second printing. Wiley, New York, p 586

  29. Iler RK (1979) The chemistry of silica: solubility polymerization, colloid and surface properties and biochemistry of silica. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank Dr A.M. Flank and P. Lagarde for their help in performing XAS experience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Khouchaf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khouchaf, L., Verstraete, J. Multi-technique and multi-scale approach applied to study the structural behavior of heterogeneous materials: natural SiO2 case. J Mater Sci 42, 2455–2462 (2007). https://doi.org/10.1007/s10853-006-1239-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1239-5

Keywords

Navigation