Density gradients in aluminium foams: characterisation by computed tomography and measurements of the effective thermal conductivity

Abstract

The density gradients present in several aluminium foams, produced by the powder metallurgical route, have been analysed by using computed tomography and by measuring the effective thermal conductivity (λ). The method used to measure λ, Transient Plane Source (TPS) technique, allows obtaining values of the local thermal conductivity, i.e. conductivity of a localised zone within the sample. These values have been related to the density of the measured zone, which was obtained from the computed tomography experiments. A power law relationship between local effective thermal conductivity and local density has been obtained.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. 1.

    Schäffler P, Rajner W (2003) In: Banhart J, Fleck N, Mortensen A (eds) Proceedings of the 3rd international conference on cellular metals and metal foaming technology, Berlin, June 2003. Verlag Mit Publishing, Bremen, p 43

  2. 2.

    Körner C, Hirschmann M, Lamm M, Singer RF (2003) In: Banhart J, Fleck N, Mortensen A (eds) Proceedings of the 3rd international conference on cellular metals and metal foaming technology, Berlin, June 2003. Verlag Mit Publishing, Bremen, p 209

  3. 3.

    Olurin OB, Arnold M, Körner C, Singer RF (2002) Mater Sci Eng A328:334

    CAS  Article  Google Scholar 

  4. 4.

    Bastawros A-F, Bart-Smith H, Evans AG (2000) J Mech Phys Solids 48(Issue2):301

    CAS  Article  Google Scholar 

  5. 5.

    Kennedy AR, Asavavisitchai S (2004) Scripta Mater 50:115

    CAS  Article  Google Scholar 

  6. 6.

    Zhou J, Shrotriya P, Soboyejo WO (2004) Mech Mater 36(8):781

    Article  Google Scholar 

  7. 7.

    Öchsner A, Lamprecht K (2003) Mech Res Commun 30(6):573

    Article  Google Scholar 

  8. 8.

    Queheillalt DT, Sypeck DJ, Wadley HNG (2002) Mater Sci Eng 323(1–2):138

    Article  Google Scholar 

  9. 9.

    Babcsán N, Mészáros I, Hegman N (2003) Mat-wiss u. Werkstofftech 34:394

    Google Scholar 

  10. 10.

    Boemusma K, Poulikakos D (2001) Int J Heat Mass Transf 44:827

    Article  Google Scholar 

  11. 11.

    Abramenko AN et al (1999) J Eng Phys Thermophys 72:369

    CAS  Article  Google Scholar 

  12. 12.

    Paek JW, Kang BH, Hyun JM (2000) Int J Thermophys 21(2):453

    CAS  Article  Google Scholar 

  13. 13.

    Lu TJ, Chen C (1999) Acta Mater 47(n.5):1469

    CAS  Article  Google Scholar 

  14. 14.

    Seo YK, Kang BH, Kim J-H (2001) Int J Heat Mass Transf 44:1451

    Article  Google Scholar 

  15. 15.

    Phanikumar MS, Mahajan RL (2002) Int J Heat Mass Transf 45:3781

    CAS  Article  Google Scholar 

  16. 16.

    Collishaw PG, Evans JRG (1994) J Mater Sci 29:486

    CAS  Article  Google Scholar 

  17. 17.

    Brink J, Heiken JP, Waug G et al (1994) Radiographies 14:887

    CAS  Article  Google Scholar 

  18. 18.

    Majumdar S et al (1995) Bone 14:417

    Article  Google Scholar 

  19. 19.

    Long DT, King MA, Sheehan J (1992) Med Phys 19:483

    CAS  Article  Google Scholar 

  20. 20.

    http://www.npl.co.uk/thermal/ctm/ as on 15 July 2005

  21. 21.

    Bouguerra A, Aït-Mokhtar A, Amiri O, Diop MB (2001) Int Commun Heat Mass Transf 28:1065

    Article  Google Scholar 

  22. 22.

    Saxena NS et al (1999) Eur Poly J 35:1687

    CAS  Article  Google Scholar 

  23. 23.

    Mangal R et al (2003) Mater Sci Eng A339:281

    CAS  Article  Google Scholar 

  24. 24.

    Almanza O, Rodriguez-Pérez MA, De Saja JA (2004) J Polymer Sci Part B Polymer Phys 42:1226

    CAS  Article  Google Scholar 

  25. 25.

    Reglero JA, Rodríguez-Perez MA et al (2003) In: Jerz J, Sêbo P, Zemánková M (eds) Proceedings of the international conference advanced metallic materials, Slovakia, November 2003. Slovak Academy of Sciences, Bratislava, p 253

  26. 26.

    Reglero JA, Rodríguez-Perez MA et al (2003) In: Banhart J, Fleck N, Mortensen A (eds) Proceedings of the 3th international conference on cellular metals and metal foaming technology, Berlin, June 2003. Verlag Mit Publishing, Bremen, p 499

  27. 27.

    Log T, Gustafsson SE (1995) Fire Mater 19(1):43

    CAS  Article  Google Scholar 

  28. 28.

    Gustavsson M, Karawacki E, Gustafsson SE (1994) Rev Sci Instruments 65:3856

    CAS  Article  Google Scholar 

  29. 29.

    Ashby MF, Evans A, Fleck N, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams: a design guide. Butterworth-Heinemann, Burlington, p 47

Download references

Acknowledgments

The authors are grateful to the IFAM in Bremen (D. Lehmhus) which supplied the materials of this work and to the Hospitals “Clínico Universitario” (Mr. César P. Zapata) and “Pío Río Hortega” (Mr. Ignacio Hernando), placed in Valladolid, which allowed us working with their helical scanners.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Rodríguez-Pérez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Solórzano, E., Rodríguez-Pérez, M.A., Reglero, J.A. et al. Density gradients in aluminium foams: characterisation by computed tomography and measurements of the effective thermal conductivity. J Mater Sci 42, 2557–2564 (2007). https://doi.org/10.1007/s10853-006-1233-y

Download citation

Keywords

  • Foam
  • Effective Thermal Conductivity
  • Aluminium Foam
  • Metal Foam
  • Foam Core