Skip to main content
Log in

Synthesis, crystallographic characterization and ionic conductivity of iron substituted sodium zirconium phosphate Na1.2Zr1.8Fe0.2(PO4)3

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Sodium zirconium phosphate NaZr2P3O12 (hereafter NZP) crystallizes in rhombohedral (hexagonal) symmetry with the space group R-3c. The NZP-related phase of synthetic iron substituted NZP has been prepared by partial substitution on zirconium site by Fe(III). The material has been synthesized by sintering the finely powdered oxide mixture in a muffle furnace at 1,050 °C. The polycrystalline phase of Na1.2Zr1.8Fe0.2(PO4)3 has been characterized by its typical powder diffraction pattern. The powder diffraction data of 3,000 points have been subjected to general structural analysis system (GSAS) software to arrive at a satisfactory structural fit with R p = 0.0623 and R wp = 0.0915. The following unit cell parameters have been calculated: a = b = 8.83498(18) Å, c = 22.7821(8) Å and α = β = 90.0° γ = 120.0°. The structure of NZP consists of ZrO6 octahedra and PO4 tetrahedra linked by the corners to form a three-dimensional network. Each phosphate group is on a two-fold rotation axis and is linked to four ZrO6 octahedra. Each zirconium octahedron lies on a threefold rotation axis and is connected to six PO4 tetrahedra. AC conductivity of the solid solution has been measured between 303 and 773 K. The material exhibits temperature-dependent enhancement of ionic conduction by ≈400 times at elevated temperatures. The activation energies show significant change in slope at 1,000/T = 2.23(448 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scheetz BE, Agrawal DK, Brevel E, Roy R (1994) Sodium zirconium phosphate (NZP) as a host structure for Nuclear waste immobilization: a review. Waste Management 14(6):489

    Article  CAS  Google Scholar 

  2. Breval E, Agrawal DK (1995) Brit Ceram Trans 94:27

    CAS  Google Scholar 

  3. Orlova AI, Pet’kov VI, Skiba OV (1997) In: International conference on future nuclear system, Global ‘97, Yokohama Proceedings, vol 2. p 1253

  4. Hazen RM, Prewitt CT (1977) Am Mineral 62:309

    CAS  Google Scholar 

  5. Govindan Kutty KV, Asuvathraman R, Sridhran R (1998) J Mat Sci 33:4007

    Article  Google Scholar 

  6. Kohler J, Imanaka N, Adachi G (1999) Chem Mater 10:1767

    Google Scholar 

  7. Verissimo Carla MS, Garrido Francisco L, Oswaldo A, Paloma C, Ana M-J, Iglesias Juan E, Rojo Jose M (1997) Solid State Ionics 100:127

    Article  Google Scholar 

  8. Roy R, Agrawal DK, Alammo J, Roy RA (1984) Mat Res Bull 19:471

    Article  CAS  Google Scholar 

  9. Hirose Y, Fukasawa T, Agrawal DK, Scheetz BE, Nageswaran R, Curtis JA, Limaye SY (1999) In: WM 1999 conference

  10. Shannon RD (1976) Acta Crystallogr A 32:751

    Article  Google Scholar 

  11. Goodenough JB, Hong HYP, Kafalas JA (1976) Mat Res Bull 11:203

    Article  CAS  Google Scholar 

  12. Hagman L, Kierkegaard P (1968) Acta Chem Stand 22:1822

    Article  CAS  Google Scholar 

  13. Hong HYP (1976) Mat Res Bull 11:173

    Article  CAS  Google Scholar 

  14. Pet’kov VI, Orlova AI, Kazantsev GN, Samoilov SG, Spiridonova ML (2001) J Therm Anal Calorimetr 66:623

    Article  Google Scholar 

  15. Buvaneswaria G, Govindan Kutty KV, Varadaraju UV (2004) Mat Res Bull 39:475

    Article  Google Scholar 

  16. JCPDS Powder diffraction data file no. 71-0959 (2000) Compiled by International Center for Diffraction Data USA

  17. Larson AC, Von Dreele RB, General structure analysis system technical manual, LANSCE, MS-H805, Los Alamos National Laboratory, USA

  18. Furberg S (1955) Acta Chem Scand 9:1557

    Article  CAS  Google Scholar 

  19. Cruickshank DWJ (1964) Acta Cryst 17:671

    Article  CAS  Google Scholar 

  20. Nord AG, Kiekegaard P (1968) Acta Chem Scand 22:1465

    Article  Google Scholar 

  21. West AR (1998) Solid state chemistry and its application, John Willey, New York, pp 484–487

  22. Breval E, McKinstry HA, Agrawal DK (1994) Br Ceram Trans 93(6):239

    CAS  Google Scholar 

  23. Nowick AS, LeeWK (1989) In: Laksar AL, Chandra S (eds) Superionic solids and solid electrolytes, recent trends. Academic press, Boston pp 381–405

  24. Le Meins JM, Bohnke O, Gourbion G (1998) Solid State Ionics 111:67

    Article  CAS  Google Scholar 

  25. Tilement O, Angenaut J, Couturier JC, Quarton M (1991) Solid State Ionics 44:299

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the help of Dr Ranveer Kumar Department of Physics, Dr. H.S. Gour University for electrical measurements on the samples. The authors thank the University Grant Commission, New Delhi for funding the major project no. F-12-137/2001(SR-1) and to DST, New Delhi for providing X-ray facility at Jammu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Shrivastava.

Appendices

Appendix 1

Table 4 O–M–O bond angles in polycrystalline Na1.2Zr1.8Fe0.2(PO4)3

Appendix 2

Table 5 Observed and calculated structure factors of polycrystalline phase Na1.2Zr1. 8Fe0.2(PO4)3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrivastava, O.P., Kumar, N. & Chourasia, R. Synthesis, crystallographic characterization and ionic conductivity of iron substituted sodium zirconium phosphate Na1.2Zr1.8Fe0.2(PO4)3 . J Mater Sci 42, 2551–2556 (2007). https://doi.org/10.1007/s10853-006-1230-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1230-1

Keywords

Navigation