Skip to main content
Log in

Deformation defects in nanocrystalline nickel

  • NanoMay 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Defects induced by plastic deformation in electrodeposited, fully dense nanocrystalline (nc) Ni with an average grain size of 25 nm have been characterized by means of high resolution transmission electron microscopy. The nc Ni was deformed under uniaxial tension at liquid-nitrogen temperature. Trapped full dislocations were observed in the grain interior and near the grain boundaries. In particular, these dislocations preferred to exist in the form of dipoles. Deformation twinning was confirmed in nc grains and the most proficient mechanism is the heterogeneous nucleation via emission of partial dislocations from the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng X (2003) Science 300:1275

    Article  CAS  Google Scholar 

  2. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2004) Nature Mater 3:43

    Article  CAS  Google Scholar 

  3. Van Swygenhoven H, Derlet PM, Frøseth AG (2004) Nature Mater 3:399

    Article  Google Scholar 

  4. Wolf D, Yamakov V, Phillpot SR, Mukherjee AK, Gleiter AH (2005) Acta Mater 53:1

    Article  CAS  Google Scholar 

  5. Budrovic Z, Van Swygenhoven H, Derlet PM, Van Petegem S, Schmitt B (2004) Science 304:273

    Article  CAS  Google Scholar 

  6. Kumar KS, Van Swygenhoven H, Suresh S (2003) Acta Mater 51:5743

    Article  CAS  Google Scholar 

  7. Wang YM, Ma E (2004) Acta Mater 52:1699

    Article  CAS  Google Scholar 

  8. Ma E (2006) JOM 58(4):49; Met Mater Int 10 (2004) 527

  9. Meyers MA, Mishra A, Benson DJ (2006) Prog Mater Sci 51:427

    Article  CAS  Google Scholar 

  10. Liao XZ, Zhou F, Lavernia EJ, Srinivasan SG, Baskes MI, He DW, Zhu YT (2003) Appl Phys Lett 83:632

    Article  CAS  Google Scholar 

  11. Zhu YT, Langdon TG (2005) Mater Sci Eng A 409:234

    Article  Google Scholar 

  12. Shan Z, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX (2004) Science 305:654

    Article  CAS  Google Scholar 

  13. Dalla Forre F, Van Swygenhoven H, Victoria M (2002) Acta Mater 50:3957

    Article  Google Scholar 

  14. Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Acta Mater 51:387

    Article  CAS  Google Scholar 

  15. Hugo RC, Kung H, Weertman JR, Mitra R, Knapp JA, Follstaedt DM (2003) Acta Mater 51:1937

    Article  CAS  Google Scholar 

  16. Legros M, Elliott BR, Rittner MN, Weertman JR, Hemker KJ (2000) Philos Magn A 80:1017

    Article  CAS  Google Scholar 

  17. Brandstetter S, Budrovic Z, Van Petegem S, Schmitt B, Stergar E, Derlet PM, Van Swygenhoven H (2005) Appl Phys Lett 87:231910

    Article  Google Scholar 

  18. Wu XL, Zhu YT, Chen MW, Ma E (2006) Scr Mater 54:1685

    Article  CAS  Google Scholar 

  19. Wu XL (2006) Appl Phys Lett 88:061905

    Article  Google Scholar 

  20. Ma E (2006) Appl Phys Lett 88:231911

    Article  Google Scholar 

  21. Wu XL, Zhu YT, Ma E (2006) Appl Phys Lett 88:121905

    Article  Google Scholar 

  22. Liao XZ, Zhou F, Lavernia EJ, He DW, Zhu YT (2003) Appl Phys Lett 83:5062

    Article  CAS  Google Scholar 

  23. Liao XZ, Zhao YH, Srinivasan SG, Zhu YT, Valiev RZ, Gunderov DV (2004) Appl Phys Lett 84:592

    Article  CAS  Google Scholar 

  24. Rosner H, Markmann J, Weissmuller J (2004) Philos Magn Lett 84:321

    Article  Google Scholar 

  25. Markmann J, Bunzel P, Rösner H, Liu KW, Padmanabhan KA, Birringer R, Gleiter H, Weissmüller J (2003) Scr Mater 49:637

    Article  CAS  Google Scholar 

  26. Froseth AG, Derlet PM, Van Swygenhoven H (2004) Acta Mater 52:5863

    Article  CAS  Google Scholar 

  27. Yamakov V, Wolf D, Phillpot SR, Gleiter H (2002) Acta Mater 50:5005

    Article  CAS  Google Scholar 

  28. Farkas D, Van Petegem S, Derlet PM, Van Swygenhoven H (2005) Acta Mater 53:3115

    Article  CAS  Google Scholar 

  29. Wang YM, Cheng S, Wei QM, Ma E, Nieh TG, Hamza A (2004) Scr Mater 51:1023

    Article  CAS  Google Scholar 

  30. Wang YM, Hamza A, Ma E (2005) Appl Phys Lett 86:241917

    Article  Google Scholar 

  31. Wang YM, Ma E (2004) Appl Phys Lett 85:2750

    Article  CAS  Google Scholar 

  32. Hollang L, Hieckmann E, Brunner D, Holste C, Skrotzki W (2006) Mater Sci Eng A 424(1–2):138

    Google Scholar 

  33. Cahn JW, Nabarro FRN (2001) Philos Magn A81:1409

    Article  Google Scholar 

  34. Essmann U, Rapp M, Wilkens M (1968) Acta Metall 16:1275

    Article  CAS  Google Scholar 

  35. Zhu YT, Liao XZ, Valiev RZ (2005) Appl Phys Lett 86:103112

    Article  Google Scholar 

  36. Zhu YT, Liao XZ, Zhao YH, Srinivasan SG, Zhou F, Lavernia EJ (2004) Appl Phys Lett 85:5049

    Article  CAS  Google Scholar 

  37. Wei Q, Cheng S, Ramesh KT, Ma E (2004) Mater Sci Eng A381:71

    CAS  Google Scholar 

  38. Liao XZ, Srinivasan SG, Zhao YH, Baskes MI, Zhu YT, Zhou F, Lavernia EJ, Xu H (2004) Appl Phys Lett 84:3564

    Article  CAS  Google Scholar 

  39. Froseth AG, Derlet PM, Van Swygenhoven H (2005) Adv Eng Mater 7:16

    Article  CAS  Google Scholar 

Download references

Acknowledgements

XLW was supported by Natural Science Foundation of China (50471086, 50571110, 10472117), 973 Project of China (2004CB619305), Key Project of CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Ma, E. & Zhu, Y.T. Deformation defects in nanocrystalline nickel. J Mater Sci 42, 1427–1432 (2007). https://doi.org/10.1007/s10853-006-1229-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1229-7

Keywords

Navigation