Skip to main content
Log in

Factors affecting prior austenite grain size in low alloy steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of varying normalising and hardening temperatures on the prior austenite grain size in a low alloy Cr–Mo–Ni–V steel has been examined. An initial relative insensitivity of grain size to increasing austenitising temperature was observed followed by a sudden growth of grains at approximately 1000 °C. A detailed study of the precipitates in the steel showed the presence of a bimodal size distribution of vanadium carbides. The grain size increase is attributed to a decrease in volume fraction and an increase in size of V4C3 particles with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gladman T (1997) The physical metallurgy of microalloyed steels. The Institute of Materials, London, p 235

    Google Scholar 

  2. Rodrigues JA, Dermonde JR (1985) Mat Sci Tech l:29

    Google Scholar 

  3. Tamura I, Ouchi C, Tanaka T, Sekine H (1988) Thermo-mechanical processing of HSLA steels. Butterworths, Stoneham, MA, p 346

    Google Scholar 

  4. Wilcox JR, Honeycombe RWK (1987) Mat Sci Tech 3:849

    CAS  Google Scholar 

  5. Tither G, Shauhau Z (1992) JOM, The Minerals, Metals and Materials Society 44:115

  6. Chen Z, Loretto MH, Cochrane RC (1987) Mat Sci Tech 3:836

    CAS  Google Scholar 

  7. Davis CL, Strangwood M (2002) J Mat Sci 37:1083

    Article  CAS  Google Scholar 

  8. Mintz B, Wilcox JR, Crowther DN (1986) Mat Sci Tech 2:589

    CAS  Google Scholar 

  9. Lee CS, Lee KA, Li DM, Yoo SJ, Nam WJ (1998) Mater Sci Eng A 241:30

    Article  Google Scholar 

  10. Nam WJ, Lee CS, Ban DY (2000) Mater Sci Eng A 289:8

    Article  Google Scholar 

  11. Mattlock DK, Krauss G, Speer JG (2005) Mat Sci Forum 500:87

    Article  Google Scholar 

  12. Gladman T, Pickering FB (1967) J Ir St Inst 205:653

    CAS  Google Scholar 

  13. Lui MW, LeMay I (1971) Metallography 4:443

    Article  CAS  Google Scholar 

  14. Krahe PR, Desnoues M (1971) Metallography 4:171

    Article  CAS  Google Scholar 

  15. Barraclough DR (1973) Metallography 6:465

    Article  CAS  Google Scholar 

  16. Ashby MF, Ebeling R (1966) Trans Met Soc AIME 236:1397

    Google Scholar 

  17. Maropoulos S, Ridley N, Karagiannis S (2004) Mater Sci Eng A 380:79

    Article  CAS  Google Scholar 

  18. Woodhead JH (1979) Vanadium in high strength steel. Vanitec, Chicago, p 78

  19. Ridley N, Maropoulos S, Paul JDH (1994) Mater Sci Tech 10:239

    CAS  Google Scholar 

  20. Ballinger NK, Honeycombe RWK (1980) Met Sci 14:121

    Google Scholar 

  21. Webster D, Allen GB (1962) J Ir St Inst 200:520

    CAS  Google Scholar 

  22. Gladman T, Dulieu D (1974) Met Sci 8:167

    CAS  Google Scholar 

  23. Batte AD, Honeycombe RWK (1973) J Ir St Inst 211:284

    CAS  Google Scholar 

  24. Lapointe AJ, Baker TN (1982) Met Sci 16:207

    Google Scholar 

  25. Reed-Hill RE (1973) Physical metallurgy principles. D. Van Nostrand, New York, p 180

    Google Scholar 

  26. Harker D, Parker EA (1945) Trans Am Soc Met 34:156

    Google Scholar 

  27. Hillert M (1965) Acta Met 13:227

    Article  CAS  Google Scholar 

  28. Gladman T, Pickering FB (1967) J Ir St Inst 205:653

    CAS  Google Scholar 

  29. Erasmus LA (1964) J Ir St Inst 202:128

    CAS  Google Scholar 

  30. Zener C (1949) J Appl Phys 20:950

    Article  CAS  Google Scholar 

  31. Hobbs RM, Lorimer GW, Ridley N (1972) J Ir St Inst 210:757

    CAS  Google Scholar 

  32. Abrahamson EP (1970) In: Burke JJ, Weiss V (eds) Ultrafine grain metals. Syracuse Univ. Press, Syracuse, p 71

  33. Pickering FB (1978) Physical metallurgy and the design of steels. Applied Sci. Publ., Essex, p 235

    Google Scholar 

  34. Gladman T (1966) Proc Royal Soc 294:298

    CAS  Google Scholar 

  35. Porter LF, Dabkowski DS (1970) In: Burke JJ, Weiss V (eds) Ultrafine grain metals. Syracuse Univ. Press, Syracuse, p 133

  36. Grange RA (1971) Met Trans 2A:65

    Google Scholar 

  37. Palmiere EJ, Garcia CI, DeArdo AJ (1994) Metall Trans 25A:277

    CAS  Google Scholar 

  38. Flores O, Martinez L (1997) J Mat Sci 32:5985

    Article  CAS  Google Scholar 

  39. Homma R (1974) Trans J Ir St Inst Jap 14:434

    Google Scholar 

Download references

Acknowledgements

The present research is sponsored by the Hellenic Ministry of National Education and Religious Affairs and the European Union within the framework of the Operational Programme for Education and Initial Vocational Training (O.P. “Education”) -the latter being cofinanced by the European Social Fund, the European Regional Development Fund and national resources

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Maropoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maropoulos, S., Karagiannis, S. & Ridley, N. Factors affecting prior austenite grain size in low alloy steel. J Mater Sci 42, 1309–1320 (2007). https://doi.org/10.1007/s10853-006-1191-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1191-4

Keywords

Navigation