Skip to main content

Effects of pH on the dispersion and cell performance of LiCoO2 cathodes based on the aqueous process


The effects of the pH of a water-based slurry on the dispersion homogeneity and cell performance of lithium cobalt oxide (LiCoO2) cathodes were investigated. Based on the results of dispersion and cell performance characterizations, it is known that the pH will affect the dispersion homogeneity of cathode materials and the resulting electronic conduction, adhesion strength and C-rate capability of as-prepared electrodes. For the LiCoO2 aqueous slurry, the as-prepared electrode sheet is homogeneous at its initial equilibrium pH of 11.6 which is a safe distance away from its iso-electric point (IEP). However, this pH value is too high; the slurry would significantly react with the aluminum substrate to damage the microstructures of the sheets and the corresponding cell performances. Hence, the pH of an as-prepared LiCoO2 slurry should be adjusted lower and kept away from the IEP as well.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Dey AN, Sullivan BP (1970) J Electrochem Soc 117:222

    CAS  Article  Google Scholar 

  2. Wolverton C, Zunger A (1998) J Electrochem Soc 145:2424

    CAS  Article  Google Scholar 

  3. Cheon SE, Kwon CW, Kim DB, Hong SJ, Kim HT, Kim SW (2000) Electrochim Acta 46:599

    CAS  Article  Google Scholar 

  4. Fransson L, Eriksson T, Edström K, Gustafsson T, Thomas JO (2001) J Power Sources 101:1

    CAS  Article  Google Scholar 

  5. Liu Z, Yu A, Lee JY (1998) J Power Sources 74:228

    CAS  Article  Google Scholar 

  6. Kim KM, Jeon WS, Chung IJ, Chang SH (1999) J Power Sources 83:108

    CAS  Article  Google Scholar 

  7. Kosova N, Devyatkina E, Osintsey D (2004) J Mater Sci 39:5031

    CAS  Article  Google Scholar 

  8. Kim J, Kim B, Lee JG, Cho J, Park B (2005) J Power Sources 139:289

    CAS  Article  Google Scholar 

  9. Li CC, Lee JT, Lo CY, Wu MS (2005) Electrochem Solid State Lett 8:A509

    CAS  Article  Google Scholar 

  10. Yang HQ, Li DP, Han S, Li N, Lin BX (1995) J Power Sources 58:221

    Article  Google Scholar 

  11. Saekil S, Lee J, Zhang Q, Saito F (2004) Int J Miner Process 74S:S373

    Article  Google Scholar 

  12. Nahass P, Rhine WE, Pober RL, Bowen HK, Robbins WL (1990) In: Nair KM, Pohanka R, Buchanan RC (eds) Ceramic transactions, vol 15, Materials and processes in microelectronic systems. American Ceramic Society, Westerville, OH, p 355

  13. Kissa E (1999) Dispersions-characterization, testing, and measurement, ch 14. Marcel Dekker, New York

  14. Appetecchi GB, Scrosati B (1998) Electrochim Acta 43:1105

    CAS  Article  Google Scholar 

  15. Abraham KM, Pasquariello DM, Willstaedt EM (1998) J Electrochem Soc 145:482

    CAS  Article  Google Scholar 

  16. Fujimoto J, Petri DFS (2001) Langmuir 17:56

    CAS  Article  Google Scholar 

  17. Li CC, Jean JH (2002) J Am Ceram Soc 85:1441

    CAS  Article  Google Scholar 

  18. Rayner-Canham G, Overton T (2002) Descriptive inorganic chemistry, ch 13, 3rd edn. WH Freeman and Company, New York

Download references


The authors are grateful to Professor J. H. Jean for his help on zeta-potential measurements.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Chia-Chen Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, CC., Lee, JT., Tung, YL. et al. Effects of pH on the dispersion and cell performance of LiCoO2 cathodes based on the aqueous process. J Mater Sci 42, 5773–5777 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Adhesion Strength
  • Dispersion Property
  • Dispersion Homogeneity
  • Styrene Butadiene Rubber
  • Aqueous Slurry