Skip to main content
Log in

Elastic properties of powders during compaction. Part 1: Pseudo-isotropic moduli

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The elastic moduli of powdered materials undergoing uniaxial compaction was investigated, paying particular attention to effects of solid phase material properties and initial particle shape. Elastic properties were characterised by the isotropic elastic moduli Poisson’s ratio and Young’s modulus, calculated from elastic wave speeds measured in the axial (pressing direction). To isolate material property effects, three different ductile metal powders (copper, stainless steel, and aluminium) with equivalent particle shape (spheroidal) were tested. Comparison with similar measurements for a brittle spheroidal powder (glass) illustrated that solid phase yield mechanism affects the evolution of pore character, and hence bulk elastic properties of the powder compact. Pore character was also studied separately by comparing copper powders with differing particle shapes (spheroidal, irregular, and dendritic).

For all powders, Young’s modulus increased monotonically with compaction (reducing porosity). For the ductile spheroidal powders, differences in evolution of Young’s modulus with compaction were accounted for by solid phase elastic properties. The different morphology copper powders showed an increase in compact compliance as particle (pore) ruggedness increased. Poisson’s ratio followed a concave porosity dependence: decreasing in the initial stages of compaction, then increasing as porosity approached zero. Comparison between powders indicated the initial decrease in Poisson’s ratio was insensitive to solid phase material properties. However, as the compact approached solid phase density, the Poisson’s ratio—porosity locus diverged towards corresponding solid phase values for each particle material, indicating an influence of solid phase elastic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Leheup ER, Moon JR (1980) Powder Metal 23:15

    CAS  Google Scholar 

  2. Straffelini G, Fontanari V, Molinari A (1999) Mater Sci Eng A 260:197

    Article  Google Scholar 

  3. Moon JR (1989) Powder Metall 32:132

    CAS  Google Scholar 

  4. Sawicki A, Swidzinski W (1998) Powder Technol 96:24

    Article  CAS  Google Scholar 

  5. Hardin BO, Blandford GE (1989) J, Geotech Engng 115:788

    Article  Google Scholar 

  6. Jones MP, Blessing GV (1988) In: McGonnagle WJ (ed) International advances in nondestructive testing, vol 13. Gordon and Breach, New York, p 175

  7. Kathrina T, Rawlings RD (1997) J Eur Ceram Soc 17:1157

    Article  CAS  Google Scholar 

  8. ALeR Dawson L. Piché, Hamel A (1996) Powder Metall 39:275

    Google Scholar 

  9. Jones MP, Blessing GV (1987) In: Proceedings of 1987 IEEE ultrasonics symposium. 1186:587

  10. Kendall K (1990) Br Ceram Trans 89:211

    CAS  Google Scholar 

  11. Brettell JM (1989) J Aust Phys 42:627

    Google Scholar 

  12. Brettell JM (1994) J Acoust Soc Am 95:2281

    Article  Google Scholar 

  13. Jones MP, Blessing GV (1986) Nondestructive Testing Commun 2:155

  14. Kathrina T, Rawlings RD (1996) Br Ceram Trans 95:233

    CAS  Google Scholar 

  15. ALeR Dawson, Pelletier S, Bussiére J (1996) Adv Powder Metall Particulate Mater 2:303

  16. Rice W (1998) Porosity of ceramics. Marcel Dekker New York

  17. Carnavas PC, Page NW (1998) J Mater Sci 33:4647

    Article  CAS  Google Scholar 

  18. Luo J, Stevens R (1999) Ceram Int 25:281

    Article  CAS  Google Scholar 

  19. Dean EA (1983) J Am Ceram Soc 66:847

    Article  CAS  Google Scholar 

  20. Martin LP, Dadon D, Rosen M (1996) J Am Ceram Soc 79:1281

    Article  CAS  Google Scholar 

  21. Green DJ, Nader C, Brezny R (1990) In: Handwerker CA, Blendell JE, Keyser W (eds) Ceramic transactions, vol. 7, Sintering of advanced ceramics. American Ceramic Society, Ohio

  22. Nagarajan A (1971) J Appl Phys 42:3693

    Article  CAS  Google Scholar 

  23. Chang L-S, Chuang T-H, Wei WJ (2000) Mater Charact 45:221

    Article  CAS  Google Scholar 

  24. Asmani M, Kermel C, Leriche A, Ourak M (2001) J Eur Ceram Soc 21:1081

    Article  CAS  Google Scholar 

  25. Adachi T, Sakka S (1990) J Mater Sci 25:4732

    Article  CAS  Google Scholar 

  26. Cytermann R, Guyon E, Roux S (1988) Powder Metall Int 20:23

    CAS  Google Scholar 

  27. Ashkin D, Haber RA, Wachtman JB (1990) J Am Ceram Soc 73:3376

    Article  CAS  Google Scholar 

  28. Haynes R, Egediege JT (1989) Powder Metall 32:47

    CAS  Google Scholar 

  29. Soga N, Schreiber E (1968) J Am Ceram Soc 51:465

    Article  CAS  Google Scholar 

  30. Zimmerman RW (1985) J Appl Mech 52:606

    Google Scholar 

  31. Zimmerman RW (1986) J Appl Mech 53:500

    Article  Google Scholar 

  32. Tsukrov I, Novak J (2002) Int J Solids Struct 39:1539

    Article  Google Scholar 

  33. Rice RW (1976) J Am Ceram Soc 59:536

    Article  Google Scholar 

  34. Rice RW (1997) J Mater Sci 32:1801

    Google Scholar 

  35. Boccaccini AR, Ondracek G, Mazilu P, Windelberg D (1993) J Mech Behav Mater 4:119

    CAS  Google Scholar 

  36. Boccaccini AR (1994) J Am Ceram, Soc 77:2779

    Article  CAS  Google Scholar 

  37. Nanjangud SC, Brezny R, Green DJ (1995) J Am Ceram Soc 78:266

    Article  CAS  Google Scholar 

  38. Patterson BR, Miljus KL, Knopp WV (1984) Powder Metal Report 39:145

    Google Scholar 

  39. Yeheskel O, Pinkas M, Dariel MP (2003) Mater Lett 57:4418

    Article  CAS  Google Scholar 

  40. Hentschel ML, Page NW (2003) Part Part Syst Charact 20:25

    Article  Google Scholar 

  41. Mason WP (1958) Physical acoustics and the properties of solids. Van Nostrand, New Jersey

  42. Hentschel ML, Page NW, Elastic properties of powders during compaction. Part 2: Elastic anisotropy. Accepted for publication in J. Mater. Sci

  43. Hentschel ML (2002) PhD Thesis, The University of Newcastle

  44. Kalpakjian S (1985) Manufacturing processes for engineering materials. John Wiley and Sons, Chichester

  45. Bever B (1986) Encyclopaedia of materials science and engineering. Plenum Press, New York

  46. Drumheller DS (1998) Introduction to wave propagation in nonlinear fluids and solids. Cambridge University Press, Cambridge

  47. Abdel -Ghani M, Petrie JG, Seville JPK, Clift R, Adams MJ (1991) Powder Technol 65:113

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge scholarship support for MLH through the Australian Research Council Small Grants Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. W. Page.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hentschel, M.L., Page, N.W. Elastic properties of powders during compaction. Part 1: Pseudo-isotropic moduli. J Mater Sci 42, 1261–1268 (2007). https://doi.org/10.1007/s10853-006-1145-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1145-x

Keywords

Navigation