Skip to main content
Log in

Deformation behavior and mechanisms of a nanocrystalline multi-phase aluminum alloy

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A nanocrystalline (nc) Al–Fe–Cr–Ti alloy containing 30 vol.% nc intermetallic particles has been used to investigate deformation behavior and mechanisms of nc multi-phase alloys. High compressive strengths at room and elevated temperatures have been demonstrated. However, tensile fracture strengths below 300 °C are lower than the corresponding maximum strengths in compression. Creep flow of the nc fcc-Al grains is suppressed even though rapid dynamic recovery has occurred. It is argued that the compressive strength at ambient temperature is controlled by propagation of dislocations into nc fcc-Al grains, whereas the compressive strength at elevated temperature is determined by dislocation propagation as well as dynamic recovery. The low tensile fracture strengths and lack of ductility at temperatures below 300 °C are attributed to the limited dislocation storage capacity of nanoscale grains. Since the deformation of the nc Al-alloy is controlled by dislocation propagation into nc fcc-Al grains, the smaller the grain size, the higher the strength. This new microstructural design methodology coupled with ductility-improving approaches could present opportunities for exploiting nc materials in structural applications at both ambient and elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang YM, Chen MW, Zhou F, Ma E (2002) Nature 419(31):912

    Article  CAS  Google Scholar 

  2. Legros M, Elliot BR, Rittner MN, Weertman JR, Hemker KJ (2000) Phil Mag 80 (4) 1017

    Article  CAS  Google Scholar 

  3. Tellkamp VL, Melmed A, Lavernia EJ (2001) Metall Mater Trans A 32A:2335

    CAS  Google Scholar 

  4. Witkin D, Lee Z, Rodriguez R, Nutt S, Lavernia EJ (2003) Scr Mater 49:297

    Article  CAS  Google Scholar 

  5. Wang YM, Ma E, Chen MW (2002) Appl Phys Lett 80(13):2395

    Article  CAS  Google Scholar 

  6. Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Acta Mater 51:387

    Article  CAS  Google Scholar 

  7. Hugo RC, Kung H, Weertman JR, Mitra R, Knapp JA, Follstaedt DM (2003) Acta Mater 51:1937

    Article  CAS  Google Scholar 

  8. Schuh CA, Nieh TG, Iwasaki H (2003) Acta Mater 51:431

    Article  CAS  Google Scholar 

  9. Sanders PG, Eastman JA, Weertman JR (1997) Acta Mater 45(10):4019

    Article  CAS  Google Scholar 

  10. Ke M, Hackney SA, Milligan WW, Aifantis EC (1995) Nanostruct Mater 5:689

    Article  CAS  Google Scholar 

  11. Youngdahl CJ, Weertman JR, Hugo RC, Kung HH (2001) Scripta Mater 44(8–9):1475

    Article  CAS  Google Scholar 

  12. Van Swygenhoven H, Spaczer M Caro A (1999) Acta Mater 47(10):3117

    Article  Google Scholar 

  13. Van Swygenhoven H, Derlet PM (2001) Phys Rev B 64:224105

    Article  Google Scholar 

  14. Yamakov V, Wolf D, Salazar M, Phillpot SR, Gleiter H (2001) Acta Mater 49:2713

    Article  CAS  Google Scholar 

  15. Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Science 300(23):1275

    Article  CAS  Google Scholar 

  16. Liao XZ, Zhou F, Lavernia EJ, He DW, Zhu YT (2003) Appl Phys Lett 83(24):5062

    Article  CAS  Google Scholar 

  17. Liao XZ, Srinivasan SG, Zhao YH, Baskes MI, Zhu YT, Zhou F, Lavernia EJ, Xu HF (2004) Appl Phys Lett 84(18):3564

    Article  CAS  Google Scholar 

  18. Jia D, Wang YM, Ramesh KT, Ma E, Zhu YT, Valiev RZ (2001) Appl Phys Lett 79(5):611

    Article  CAS  Google Scholar 

  19. Wei Q, Jia D, Ramesh KT, Ma E (2002) Appl Phys Lett 81(8):1

    Google Scholar 

  20. Carsley JE, Fisher A, Milligan WW, Aifantis EC (1998) Metall Mater Trans 29A:2261

    CAS  Google Scholar 

  21. Shaw L, Villegas J, Luo H, Miracle D (2003) Acta Mater 51(9):2647

    Article  CAS  Google Scholar 

  22. Zhou F, Lee J, Lavernia EJ (2001) Scripta Mater 44:2013

    Article  CAS  Google Scholar 

  23. Fanta G, Bohn R, Dahms M, Klassen T, Bormann R (2001) Intermetallics 9:45

    Article  CAS  Google Scholar 

  24. Inoue A, Kimura H (2000) Mater Sci Eng A 286(1):1

    Article  Google Scholar 

  25. Kimura H, Inoue A, Sasamori K, Kita K (1998) J Jpn Inst Light Metals 48(6):263

    CAS  Google Scholar 

  26. Ortiz AL, Shaw L (2004) Acta Mater 52(8):2185

    Article  CAS  Google Scholar 

  27. Shaw L, Luo H, Villegas J, Miracle D (2004) Scripta Mater 51:449

    Article  CAS  Google Scholar 

  28. Shaw L, Luo H, Villegas J, Miracle D (2004) Scripta Mater 50(7):921

    Article  CAS  Google Scholar 

  29. Luo H, Shaw L, Zhang LC, Miracle D (2005) Mater Sci Eng A 409:249

    Article  Google Scholar 

  30. Luo H, Zhang LC, Shaw L (2005) J Mater Eng Perform 14(4):441

    Article  CAS  Google Scholar 

  31. Shaw L, Zawrah M, Villegas J, Luo H, Miracle D (2003) Metall Mater Trans 34A(1):159

    CAS  Google Scholar 

  32. Massalski TB (eds) (1990) Binary alloy phase diagrams, 2nd ed. ASM International, Materials Park, OH, pp 147–149, pp 138–140, and pp 225–227

  33. Erich DL (1980) AFML-TR-79-4210

  34. Hayes RW, Rodriguez R, Lavernia EJ (2001) Acta Mater 49:4055

    Article  CAS  Google Scholar 

  35. Yaney DL, Nix WD (1987) Metall Mater Trans 18A:893

    CAS  Google Scholar 

  36. Carreno F, Ruano OA (1998) Acta Mater 46:159

    Article  CAS  Google Scholar 

  37. Rosler J, Joos R, Arzt E (1992) Metall Trans A 23:1521

    Google Scholar 

  38. Hertzberg RW (1996) Deformation and fracture mechanics of engineering materials, 4th edn. John Wiley & Sons, Inc., New York, p 18

    Google Scholar 

  39. Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon Press, Oxford, England

  40. Yoo MH, Fu CL, Lee JK (1991) Mat Res Soc Symp Proc 213:545

    CAS  Google Scholar 

  41. Pitcher PD, Shakesheff AJ, Lord JD (1998) Mater Sci Tech 14:1015

    CAS  Google Scholar 

  42. Cahn RW (1965) In: Cahn RW (ed) Physical metallurgy. North-Holland Publishing Company, Amsterdam, Netherlands, p 925

  43. Coble RL (1963) J Appl Phys 34:1679

    Article  Google Scholar 

  44. Herring C (1950) J Appl Phys 21:437

    Article  Google Scholar 

  45. Mukherjee AK, Bird JE, Dorn JE (1969) Trans ASM 62:155

    CAS  Google Scholar 

  46. Lee BJ, Mear ME, Mech J (1998) Phys Solids 39:627

    Article  Google Scholar 

  47. Price CW, Hirth JP (1972) Mater Sci Eng 9:15

    Article  CAS  Google Scholar 

  48. Gleiter H, Hornbogen E, Baro G (1968) Acta Metall 16:1053

    Article  CAS  Google Scholar 

  49. Arzt E, Ashby MF (1982) Scripta Metall 16:1285

    Article  Google Scholar 

  50. Baro G, Gleiter H, Hornbogen E (1968) Mater Sci Eng 3:92

  51. Li JCM (1963) Trans TMS-AIME 227:239

    CAS  Google Scholar 

  52. Wang YM, Chen MW, Zhou F, Ma E (2002) Nature 419(31):912

    Article  CAS  Google Scholar 

  53. Wang YM, Ma E, Chen MW (2002) Appl Phys Lett 80(13):2395

    Article  CAS  Google Scholar 

  54. Witkin D, Lee Z, Rodriguez R, Nutt S, Lavernia EJ (2003) Scr Mater 49:297

    Article  CAS  Google Scholar 

  55. Ma E (2006) JOM 58(4):49

    CAS  Google Scholar 

  56. Bohn R, Klassen T, Bormann R (2001) Intermetallics 9:559

    Article  CAS  Google Scholar 

  57. Bohn R, Klassen T, Bormann R (2001) Acta Mater 49:299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Daniel Miracle at the Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio for insightful discussion on deformation mechanisms of nanocrystalline materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon L. Shaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, L.L., Luo, H. Deformation behavior and mechanisms of a nanocrystalline multi-phase aluminum alloy. J Mater Sci 42, 1415–1426 (2007). https://doi.org/10.1007/s10853-006-1118-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1118-0

Keywords

Navigation