Skip to main content

Advertisement

Log in

Structure and properties of bulk nanostructured alloys synthesized by flux-melting

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanomaterials can easily be prepared as thin films and powders, but are much harder to prepare in bulk form. Nanostructured materials are prepared mainly by consolidation, electrodeposition, and deformation. These processing techniques have problems such as porosity, contamination, high cost, and limitations in refining the grain size. Since most bulk engineering metals are initially prepared by casting, we developed a casting technique, flux-melting and melt-solidification, to prepare bulk nanostructured alloys. The casting technique has such advantages as simplicity, low cost, and full density. In our method, Ag–Cu alloys were melted in B2O3 flux, which removed most of the impurities, mainly oxides, in the melts. Upon solidifying the melt at a relatively slow cooling rate on the order of 101–102 K/s a large undercooling of ∼0.25 T m (where T m is the melting temperature) was achieved. This large undercooling leads to the formation of bulk nanostructured Ag–Cu alloys composed of alternative Ag/Cu lamella and nanocrystals, both ∼50 nm in dimension. Our liquid-processed alloys are fully dense and relatively free from contamination. The nanostructured Ag–Cu alloys have similar yield strength in tension and in compression. The as-quenched alloys have yield strength of 400 MPa, ultimate tensile strength (UTS) of 550 MPa, and plastic elongation of ∼8%. The UTS was further increased to ∼830 MPa after the as-quenched alloy rod was cold drawn to a strain of ∼2. The nanostructured Ag–Cu alloys show a high electrical conductivity (∼80% that of International Annealed Copper Standard), a slight strain hardening (strain-hardening coefficient of 0.10), and a high thermal stability up to a reduced temperature of 2/3 T m. Some of these behaviors are different than those found in previous bulk nanostructured materials synthesized by solid state methods, and are explained based on the unique nanostructures achieved by our flux-melting and melt-solidification technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gleiter H (1989) Prog Mater Sci 33:223

    Article  CAS  Google Scholar 

  2. Sanders PG, Eastman JA, Weertman JR (1997) Acta Mater 45:4019

    Article  CAS  Google Scholar 

  3. Shen TD, Koch CC, Tsui TY, Pharr GM (1995) J Mater Res 10:2892

    CAS  Google Scholar 

  4. Koch CC, Morris DG, Lu K, Inoue A (1999) MRS Bull 24:54

    CAS  Google Scholar 

  5. Youssef KM, Scattergood RO, Murty KL, Koch CC (2004) Appl Phys Lett 85:929

    Article  CAS  Google Scholar 

  6. Zhang X, Wang H, Koch CC (2004) Rev Adv Mater Sci 6:53

    CAS  Google Scholar 

  7. Youssef KM, Scattergood RO, Murty KL, Horton JA, Koch CC (2005) Appl Phys Lett 87:091904

    Article  CAS  Google Scholar 

  8. Schwarz RB, Kasiraj P, Vreeland T, Ahrens TJ (1984) Acta Metall 32:1243

    Article  CAS  Google Scholar 

  9. Kasiraj P, Vreeland T, Schwarz RB, Ahrens TJ (1984) Acta Metall 32:1235

    Article  CAS  Google Scholar 

  10. Wang N, Wang Z, Aust KT, Erb U (1997) Mater Sci Eng A 237:150

    Article  Google Scholar 

  11. Ebrahimi F, Zhai Q, Kong D (1998) Scripta Mater 39:315

    Article  CAS  Google Scholar 

  12. Karimpoor AA, Erb U, Aust KT, Palumbo G (2003) Scripta Mater 49:651

    Article  CAS  Google Scholar 

  13. Saber KH, Koch CC, Fedkiw PS (2003) Mater Sci Eng A 341:174

    Article  Google Scholar 

  14. Lu L, Sui ML, Lu K (2000) Science 287:1463

    Article  CAS  Google Scholar 

  15. Lu L, Shen YF, Chen XH, Qian LH, Lu K (2004) Science 304:422

    Article  CAS  Google Scholar 

  16. Wang YM, Cheng S, Wei QM, Ma E, Nieh TG, Hamza A (2004) Scripta Mater 51:1023

    Article  CAS  Google Scholar 

  17. Czerwinski F, Sepunar JA (1999) Nanostruct Mater 11:669

    Article  CAS  Google Scholar 

  18. Wolf H, Guan Z, Li X, Wichert Th (2001) Hyperfine Interact 136/137:281

    Article  CAS  Google Scholar 

  19. Valiev RZ, Krasilnikov NA, Tsenev NK (1991) Mater Sci Eng A 137:35

    Article  Google Scholar 

  20. Valiev RZ, Korznikov AV, Mulyukov RR (1993) Mater Sci Eng A 168:141

    Article  Google Scholar 

  21. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  22. Zhu YT, Jiang Honggang, Huang Jianyu, Lowe TC (2001) Metall Mater Trans 32A:1559

  23. Salishchev GA, Valiakhmetov OR, Valitov VA, Muktarov SK (1994) Mater Sci Forum 170–172:121

    Article  Google Scholar 

  24. Beygelzimer Y, Orlov D, Varyukhin V (2002) In: Zhu YT, Langdon TG, Mishra RS, Semiatin SL, Saran MJ, Lowe TC (eds) Ultrafine grained materials. 2002 TMS Annual Meeting and Exhibition, Seattle, p 297

  25. Stolyarov VV, Beygelimev YE, Orlov DV, Valiev RZ (2005) Phys Met Metall 99:204

    Google Scholar 

  26. Atzmon M, Verhoeven JD, Gibson ED, Johnson WL (1984) Appl Phys Lett 45:1052

    Article  CAS  Google Scholar 

  27. Shen TD, Quan MX, Wang JT (1994) J Mater Sci 28:394

    Article  Google Scholar 

  28. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579

    Article  CAS  Google Scholar 

  29. Huang X, Hansen N, Tsuji N (2006) Science 312:249

    Article  CAS  Google Scholar 

  30. Wood JT, Embury JD, Ashby MF (1997) Acta Mater 45:1099

    Article  CAS  Google Scholar 

  31. Embury JD, Han K (1998) Curr Opin Solid State Mater Sci 3:304

    Article  CAS  Google Scholar 

  32. Leprince-Wang Y, Han K, Huang Y, Yu-Zhang K (2003) Mater Sci Eng A 351:214

    Article  CAS  Google Scholar 

  33. Han K, Vasquez AA, Xin Y, Kalu PN (2003) Acta Mater 51:767

    Article  CAS  Google Scholar 

  34. Embury JD, Fisher RM (1966) Acta Metall 14:147

    Article  CAS  Google Scholar 

  35. Han K, Mottishaw TD, Smith GDW, Edmonds DV, Stacey AG (1995) Mater Sci Eng A 190:207

    Article  Google Scholar 

  36. Han K, Mottishaw TD, Smith GDW, Edmonds DV (1994) Mater Sci Technol 10:955

    CAS  Google Scholar 

  37. Han K, Smith GDW, Edmonds DV (1995) Metall Mater Trans A 26A:1617

    CAS  Google Scholar 

  38. Biloni H, Boettinger WJ (1996) In: Cahn RW, Haasen P (eds) Physical metallurgy. Elsevier Science B V, Amsterdam, ch 8

  39. Shen TD, Schwarz RB, Zhang X (2005) Appl Phys Lett 87:141906

    Article  CAS  Google Scholar 

  40. Schwarz RB, Vuorinen JF (2000) J Alloys Compd 310:243

    Article  CAS  Google Scholar 

  41. Guinier A (1963) X-ray diffraction. Freeman, San Francisco, p 124

  42. Klug HP, Alexander LE (1974) X-ray diffraction procedure. John Wiley & Sons, New York, p 591

  43. Murray JL (1984) Metall Trans 15A:261

    CAS  Google Scholar 

  44. Massalski TB (1996) In: Cahn RW, Haasen P (eds) Physical metallurgy. Elsevier Science B.V., Amsterdam, ch 3

  45. Carreker RP (1957) Trans AIME 209:112

    Google Scholar 

  46. Carreker RP, Hibbard WR (1953) Acta Metall 1:654

    Article  CAS  Google Scholar 

  47. Han K, Embury JD, Sims JR, Campbell LJ, Schneider-Muntau HJ, Pantsyrnyi VI, Shikov A, Nikulin A, Vorobieva A (1999) Mater Sci Eng A 267:99

    Article  Google Scholar 

  48. Spitzig WA, Pelton AR, Laabs FC (1987) Acta Metall 35:2427

    Article  CAS  Google Scholar 

  49. Han K, Embury JD, Petrovic JJ, Weatherly GC (1998) Acta Mater 46:4691

    Article  CAS  Google Scholar 

  50. Han K, Hirth JP, Embury JD (2001) Acta Mater 49:1537

    Article  CAS  Google Scholar 

  51. Sanders PG, Youngdahl CJ, Weertman JR (1997) Mater Sci Eng A 234:77

    Article  Google Scholar 

  52. Iyer RS, Frey CA, Sastry SML, Waller BE, Buhro WE (1999) Mater Sci Eng A 264:210

    Article  Google Scholar 

  53. Qin XY, Wu XJ, Zhang LD (1995) Nanostruct Mater 5:101

    Article  CAS  Google Scholar 

  54. Haasen P (1996) In: Cahn RW, Haasen P (eds) Physical metallurgy. Elsevier Science B V, Amsterdam, p 2009

  55. Massalski TB (1996) In: Cahn RW, Haasen P (eds) Physical metallurgy. Elsevier Science B V, Amsterdam, p 182

  56. Misra A, Verdier M, Kung H, Embury JD, Hirth JP (1999) Scripta Mater 41:973

    Article  CAS  Google Scholar 

  57. Han K, Lawson AC, Wood JT, Embury JD, Von Dreele RB, Richardson JW Jr (2004) Phil Mag 84:2579

  58. Han K, Embury JD, Lawson AC, Von Dreele RB, Richardson JW Jr, Wood JT (2004) In: Schneider-Muntau H (ed) VIIIth International conference on megagauss magnetic field generation and related topics. World Scientific, Singapore, p 154

  59. Hertzberg RW (1983) Deformation and fracture mechanics of engineering materials. John Wiley & Sons, New York, p 17

  60. Ma E, Shen TD, Wu XL (2006) Nat Mater 5:515

    Article  CAS  Google Scholar 

  61. Champion Y, Langlois C, Guerin-mailly S, Langlois P, Bonnentien JL, Hytch MJ (2003) Science 300:310

    Article  CAS  Google Scholar 

  62. Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5

    CAS  Google Scholar 

  63. Gleiter H (1996) In: Cahn RW, Haasen P (eds) Physical metallurgy. Elsevier Science B V, Amsterdam, p 878

Download references

Acknowledgements

This work was supported by the Laboratory Directed Research & Development (LDRD) program of the Los Alamos National Laboratory and the National High Magnetic Field Laboratory (NHMFL) at the Los Alamos National Laboratory. Part of the work was performed at the National High Magnetic Field Laboratory, which was supported by NSF Cooperative Agreement No. DMR-0084173, by the State of Florida, and by the DOE. Part of the work was supported by a PREM program by NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, T.D., Zhang, X., Han, K. et al. Structure and properties of bulk nanostructured alloys synthesized by flux-melting. J Mater Sci 42, 1638–1648 (2007). https://doi.org/10.1007/s10853-006-1096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1096-2

Keywords

Navigation