Skip to main content
Log in

Structural and morphological properties of RE3+ doped sesquioxide Y2O3 spherical nanoparticles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Effects of rare earth (Er3+, Yb3+, Sm3+, Ce3+) doping of yttrium oxide nanoparticles on the crystal structure and morphology have been investigated. X-ray diffraction, thermal analysis and scanning electron microscopy show that chemical and structural transformations are taking place in as-prepared carbonate spherical particles in the temperature range of 400–1200 K. In the final form crystalline agglomerates are compositionally homogeneous with a diameter range of 165–185 nm and an average crystalline grain size of 45 nm. Rare earth (RE) doped yttria particles are found to be up to 40% smaller in crystal grain size. The development of surface texture is due to nanocrystalline substructure which is related to the applied thermal treatment: carbonate decomposition and yttria crystallization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Swamy V, Seifert HJ, Aldinger F (1998) J Alloys Comp 269:201

    Article  CAS  Google Scholar 

  2. Samsonov GV (1973) The oxide handbook, IFI/Plenum Press, London, p 109

    Google Scholar 

  3. Matsuura D (2002) Appl Phys Lett 81:4526

    Article  CAS  Google Scholar 

  4. Minami T (2002) Solid-State Electronics 47:2237

    Article  Google Scholar 

  5. Schmechel R, Kennedy M, von Seggern H, Winkler H, Kolbe M, Fischer RA, Xaomao L, Benker A, Winterer M, Hahn H (2001) J Appl Phys 89:1679

    Article  CAS  Google Scholar 

  6. Boulon G, Laversenne L, Goutaudier C, Guyot Y, Cohen-Adad MT (2003) J Lumin 102–103:417

    Article  Google Scholar 

  7. Fornasiero L, Mix E, Peters V, Petermann K, Hubner G (2000) Ceram Internat 26:598

    Google Scholar 

  8. Wittke JP, Ladany I, Yocom PN (1972) J Appl Phys 43:595

    Article  CAS  Google Scholar 

  9. Pons O, Moll Y, Huignard A, Antic-Fidancev E, Aschehoug P, Viana B, Millon E, Perriere J, Garapon C, Mugnier J (2000) J Lumin 87–89:1115

    Article  Google Scholar 

  10. Dassuncao LM, Giolito I, Ionashiro M (1989) Thermochim Acta 137:319

    Article  CAS  Google Scholar 

  11. Matijevic E, Hsu Wan P (1987) J Coll Inter Sci 118:506

    Article  CAS  Google Scholar 

  12. Aiken B, Hsu Wan P, Matijevic E (1988) J Am Cer Soc 71:845

    Article  CAS  Google Scholar 

  13. Duran P, Moure C, Jurado JR (1994) J Mater Sci 29:1940

    Article  CAS  Google Scholar 

  14. Ji-Guang Li, Ikegami T, Wang Y, Mori T (2002) J Sol State Chem 168:52

    Article  Google Scholar 

  15. Dasgupta N, Krishnamoorthy R, Thomas Jacob L (2001) Inter J Inorg Mater 3:143

    Article  CAS  Google Scholar 

  16. Hao J, Studenikin SA, Cocivera M (2001) J Lumin 93:313

    Article  CAS  Google Scholar 

  17. Pang Q, Shi J, Liu Y, Xing D, Gong M, Xu N (2003) Mat Sci Eng B103:57

    CAS  Google Scholar 

  18. Davolos MR, Feliciano S, Pires AM, Marques RFC, Jafelicci M Jr (2003) J Sol State Chem 171:268

    Article  CAS  Google Scholar 

  19. Shaw WHR, Bordeaux JJ (1955) J Am Chem Soc 77:4729

    Article  CAS  Google Scholar 

  20. Bates CF, Mesmer RE (1976) In: The hydrolysis of cations. Wiley, New York, p 129

  21. Wyckoff RWG (1964) In: Crystal structure, vol 2. Interscience, New York

  22. Azarov LV (1968) In: Elements of X-ray crystallography. McGraw-Hill, New York, p 552

  23. Subramian MA, Sleight AW (1993) Rare Earth Pyrochlores In: Gschneider KA Jr., Eyring L (eds) Handbook on the physics and chemistry of rare earth, vol 16. Elsevier Science North-Holland, Amsterdam, p 231

  24. Tanaka M, Nishisu Y, Kobayashi M, Kurita A, Hanzawa H, Kanematsu Y (2003) J Non-Crys Sol 318:175

    Article  CAS  Google Scholar 

  25. Ng V, Lee YV, Chen BT, Adeyeye AO (2002) Nanotechnology 13:554

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank their colleagues Drs L. Giersig and A. Schindler, NETZSCH-Gerätebau GmbH, for the use of the STA 449 Jupiter thermal analyzer, and Dr S. Stowe, Electron Microscope Unit, Australian National University for the use of the Hitachi S-4500 FESEM. The work was supported in part by Australian Research Council grant A00104371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Kaczmarek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaczmarek, W.A., Riesen, H. Structural and morphological properties of RE3+ doped sesquioxide Y2O3 spherical nanoparticles. J Mater Sci 41, 8320–8328 (2006). https://doi.org/10.1007/s10853-006-1017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1017-4

Keywords

Navigation