Skip to main content
Log in

Viscoelastic properties of hybrid copolymers based on methacryloxypropyl-grafted nanosilica and methyl methacrylate

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The linear viscoelastic behavior of “model” hybrid materials based on methyl methacrylate and methacryloxypropyl-grafted nanosilica was investigated. As unique features, the materials under study present an excellent dispersion of silica within the polymer matrix and are almost free of uncross-linked chains. In addition, very progressive changes in network architecture are available, resulting from changes in particle diameter, d, volume fraction of filler, Φ, number of methacryloyl units grafted per surface unit of silica particle, n, and nature of the grafting agent. The influence of these parameters on the characteristics of the mechanically active relaxations α and β was examined. Emphasis was put on the storage modulus, E′, on the loss modulus, E′′, and on their dependence on filler volume fraction. E′′ values were shown to simply account for the reduction of the mechanical energy lost within the material, in connection to the occurrence of polymer molecular motions. Analysis of E′ variations as a function of Φ was based on the theoretical models available in the literature to account for the contribution of the spherical filler particles. In the glassy state, Kerner’s and Christensen and Lo’s models yielded comparable results. In the rubbery state, Guth and Gold’s model was shown to prevail on Kerner’s model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alexandre M, Dubois P (2000) Mater Sci Eng 28:1

    Article  Google Scholar 

  2. Ruan WH, Zhang MQ, Rong MZ, Friedrich K (2004) J Mater Sci 39:3475

    Article  CAS  Google Scholar 

  3. Ruan WH, Zhang MQ, Rong MZ, Friedrich K (2003) Polym Eng Sci 43:490

    Article  Google Scholar 

  4. Chang J-H, An YU, Sur GS (2003) J Polym Sci: Part B: Polym Phys 41 (2003) 94

    Google Scholar 

  5. Yano K, Usuki A, Osaka A (1997) J Polym Sci: Part A: Polym Chem 35:2289

    Article  CAS  Google Scholar 

  6. Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, Shields J, Kharchenko S, Douglas J (2004) Polymer 45:4227

    Article  CAS  Google Scholar 

  7. Qin H, Su Q, Zhang S, Zhao B, Yang M (2003) Polymer 44:7533

    Article  CAS  Google Scholar 

  8. Xu Y, Brittain WJ, Xue C, Eby RB (2004) Polymer 45:3735

    Google Scholar 

  9. Mauger M, Dubault A, Halary JL (2004) Polym Int 53:378

    Article  CAS  Google Scholar 

  10. Li Y, Zhao B, Xie S, Zhang S (2003) Polym Int 52:892

    Article  CAS  Google Scholar 

  11. Moussaif N, Groeninckx G (2003) Polymer 44:7899

    Article  CAS  Google Scholar 

  12. Ash BJ, Schadler S, Sielgel RW (2002) Mater Lett 55:83

    Article  CAS  Google Scholar 

  13. Ash BJ, Sielgel RW, Schadler S (2004) J Polym Sci: Part B: Polym Phys 42:4371

    Article  CAS  Google Scholar 

  14. Sunkara HB, Jethmalani JM, Ford WT (1994) Chem Mater 6:362

    Article  CAS  Google Scholar 

  15. Jethmalani JM, Ford WT (1996) Chem Mater 8:2138

    Article  CAS  Google Scholar 

  16. Jethmalani JM, Sunkara HB, Ford WT (1997) Langmuir 13:2633

    Article  CAS  Google Scholar 

  17. Jethmalani JM, Ford WT (1997) Langmuir 13:3338

    Article  CAS  Google Scholar 

  18. Kerner EH (1956) Proc Phys Soc 69B:808

    Google Scholar 

  19. Nielsen LE (1966) J Appl Polym Sci 10:97

    Article  CAS  Google Scholar 

  20. Ramsteiner R, Theysohn R (1984) Composites 15:121

    Article  CAS  Google Scholar 

  21. Christensen RM, Lo KH (1979) J Mech Phys Solids 27:315

    Article  CAS  Google Scholar 

  22. Guth E, Gold O (1938) Phys Rev 53:322

    CAS  Google Scholar 

  23. Tordjeman P (1992) Thesis, University Pierre and Marie Curie, Paris

  24. Tézé L (1995) Thesis, University Pierre and Marie Curie, Paris

  25. Heux L, Lauprêtre F, Halary JL, Monnerie L (1998) Polymer 39:1269

    Article  CAS  Google Scholar 

  26. Tézé L, Halary JL, Monnerie L, Canova L (1999) Polymer 40:971

    Article  Google Scholar 

  27. Dubault A, Bokobza L, Gandin E, Halary JL (2003) Polym Int 52:1108

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of the French Ministry of Research and Technology through the PhD grant provided to one of us (M.M) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Halary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mauger, M., Dubault, A. & Halary, J. Viscoelastic properties of hybrid copolymers based on methacryloxypropyl-grafted nanosilica and methyl methacrylate. J Mater Sci 41, 8284–8294 (2006). https://doi.org/10.1007/s10853-006-1008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1008-5

Keywords

Navigation