Skip to main content
Log in

Thermal shock behaviour of a kaolinte refractory prepared using a natural organic binder

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermal shock resistance of a kaolinite-based refractory prepared with a binder derived from a plant (corchorus olitorius) was investigated. Thermal shock tests employing water-quenching technique were performed at quench temperature differences of between 80 and 580 °C and then the damage parameter, and thermal shock parameters (R, R′, and R′′′) evaluated using measured strength and modulus values. The results showed that R and R′ parameters increased with increasing binder concentrations, an indication that the damage due to crack initiation was progressively impaired with increased binder concentrations. The R′′′ parameter on the other hand decreased with increasing binder concentrations indicating poor resistance of the material to crack propagation. These observations were also matched with thermal shock results which showed that samples plasticized with higher binder concentration had relatively very high strengths before thermal shock, compared to those plasticized with plain water, but they experienced rather large strength losses (over 60% of their initial values) at quench temperature difference (ΔT) exceeding 325 °C. The critical temperature difference (ΔT C) for the samples tested was in the range 250–325 °C. Scanning electron microscope (SEM) micrographs of samples quenched at temperature difference of 580 °C showed that samples plasticized with high binder concentration (0.68) experienced severe cracking of the matrix compared to their counterparts plasticized with plain water, whose microstructures showed an inhibited crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Papargyris AD, Cooke RD (1996) Brit Ceram Trans 95(3):107

    CAS  Google Scholar 

  2. Becher P (1981) J Am Ceram Soc 64(1):37

    Article  CAS  Google Scholar 

  3. Bayuseno P, Athanasius L, Bruno A, O’Connor HOB (1999) J Am Ceram Soc 82(4):819

    Article  CAS  Google Scholar 

  4. Brewer JA, Moore RH, Reed JS (1981) Am Ceram Soc Bull 68(2):212

    Google Scholar 

  5. Tanaka H, Fukai S, Uchida N, Uematsu K, Sakamoto A, Nagao Y (1994) J Am Ceram Soc 77(12):3077

    Article  CAS  Google Scholar 

  6. Baklouti S, Chartier T, Baumard JF (1997) J Am Ceram Soc 80(8):1992

    Article  CAS  Google Scholar 

  7. Aduda BO, Nyongesa FW, Obado G (1999) J Mater Sci Lett 18:1653

    Article  CAS  Google Scholar 

  8. Park S and Hartley JG (1999) J Appl Phys 86(9):5263

    Article  CAS  Google Scholar 

  9. Liwu W, Aldinger F (2000) Adv Eng Mater 2(3):109

    Google Scholar 

  10. Ogacho AA, Aduda BO, Nyongesa FW (2003) J Mater Sci 38:2293

    Article  CAS  Google Scholar 

  11. Aksel C, Warren PD (2003) J Euro Ceram Soc 23:301

    Article  CAS  Google Scholar 

  12. Kelly A, Macmillan NH (1986) Strong Solids, 3rd ed. Clarendon Press, New York pp. 55-95, 179–186

  13. Hasselman DPH (1963) J Am Soc 46(11):535

    CAS  Google Scholar 

  14. Hasselman DPH (1969) J Am Soc 52(11):600

    CAS  Google Scholar 

  15. Hasselman DPH (1970) Am Cerm Soc Bull 49(12):1033

    Google Scholar 

  16. Kulkarni N, Moudgil B, Bhardwaj M (1994) Am Ceram Soc Bull 73(6):146

    CAS  Google Scholar 

  17. Nyongesa FW, Aduda BO (2000) Brit Ceram Trans 99(5):206

    Article  Google Scholar 

  18. Ogacho AA (2002) MSc. Thesis, University of Nairobi, Kenya

  19. Vedula RV, Green DJ, Hellman JR (1999) J Am Ceram Soc 82(3):649

    Article  CAS  Google Scholar 

  20. Zhang J, Perez RJ, Wong CR, Lavernia EJ (1994) Mater Sci Eng R13:325–390

    Article  Google Scholar 

  21. Bruck AH, Barry HR (1999) Am Ceram Soc 82:2927

    Article  CAS  Google Scholar 

  22. Kaye GWC, Laby TH (1986) Tables of physical and chemical constants and some mathematical functions 5th edn. Longmans, London

    Google Scholar 

  23. Kingery WD, Bowen HK, Uhlmann DR (1991) Introduction to Ceramics, 2nd edn. John Wiley & Sons, Singapore, p 829

Download references

Acknowledgements

The authors wish to thank the International programme in Physical Sciences (IPPS) of Uppsala University Sweden for partial funding of the project, and the University of Nairobi for providing scholarship to AAO, and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. O. Aduda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogacho, A.A., Aduda, B.O. & Nyongesa, F.W. Thermal shock behaviour of a kaolinte refractory prepared using a natural organic binder. J Mater Sci 41, 8276–8283 (2006). https://doi.org/10.1007/s10853-006-1007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1007-6

Keywords

Navigation