Skip to main content

Advertisement

Log in

Nanoparticle consolidation using equal channel angular extrusion at room temperature

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, we demonstrate the use of equal channel angular extrusion (ECAE) for the consolidation of metallic nanoparticles at room temperature as a bottom up approach to fabricating nanocrystalline (NC) metals. Three different initial average particle sizes of pure copper were used: −325 mesh micron size particles, 130 nm and 100 nm nanoparticles. The processing work was divided into three major stages (Stages I–III), depending on the powder filling procedure used prior to ECAE, to investigate the effect of processing parameters such as extrusion rate and ECAE route, powder filling environment, and hydrostatic pressure on the final performance of the consolidates. Microstructure of the consolidates and monotonic mechanical behavior were determined at room temperature. The Stage I experiments revealed what can materials, ECAE routes and range of extrusion rates to use for achieving near full density consolidates. In Stages II and III, the effect of initial compact density on the resulting mechanical behavior was investigated. It was found that the prior compaction is helpful in breaking down the initial nanoparticle agglomerates and achieving high tensile strength and ductility levels in the ECAE consolidates. Tensile strength as high as 800 MPa and tensile ductility as high as 7% were achieved in 100 nm Cu particle consolidates, which were more than 1.5 cm in diameter and 10 cm in length, with a bimodal grain size distribution in the range of 50–100 nm and 300 nm–600 nm. ECAE was also used to consolidate 316 L stainless steel nanoparticles resulting in bulk samples with tensile strength of 1180 MPa and 4% ductility. The present study shows that ECAE can be a feasible method for fabricating bulk NC materials with all dimensions in the centimeter range. Future work is needed to further optimize the processing parameters for improving the ductility level further and controlling the grain size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Gleiter H (1989) Prog Mater Sci 33:223

    Article  CAS  Google Scholar 

  2. Gleiter H (2000) Acta Mater 48:1

    Article  CAS  Google Scholar 

  3. Yip S (1998) Nature 391:532

    Article  CAS  Google Scholar 

  4. Yip S (2004) Nature Mater 3:11

    Article  CAS  Google Scholar 

  5. Ma E (2004) Science 305:623

    Article  CAS  Google Scholar 

  6. Milligan WW (2003) In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity. Elsevier Ltd., Oxford, p 529

  7. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2004) Nature Mater 3:43

    Article  CAS  Google Scholar 

  8. Weertman JR (2004) MRS Bulletin 29:616

    CAS  Google Scholar 

  9. Van Swygenhoven H, Weertman JR (2003) Scripta Mater 49:625

    Article  CAS  Google Scholar 

  10. McFadden X, Mishra RS, Valiev RZ, Zhilyaev AP, Mukherjee AK (1999) Nature 398:684

    Article  CAS  Google Scholar 

  11. Nieh TG, Wadsworth J (1991) Scripta Metall Mater 25:955

    Article  CAS  Google Scholar 

  12. Siegel RW, Fougere GE (1995) Nanostruct Mater 6:205

    Article  CAS  Google Scholar 

  13. Youssef KM, Scattergood RO, Murty KL, Koch CC (2004) Appl Phys Lett 85:929

    Article  CAS  Google Scholar 

  14. Koch CC (2003) Scripta Mater 49:657

    Article  CAS  Google Scholar 

  15. Scattergood RO, Koch CC (1992) Scripta Metall Mater 27:1195

    Article  CAS  Google Scholar 

  16. Carsley JE, Fisher A, Milligan WW, Aifantis EC (1998) Metall Mater Trans A 29:2261

    Google Scholar 

  17. Erb U (1995) Nanostruct Mater 6:533

    Article  Google Scholar 

  18. Erb U, Palumbo G, Szpunar B, Aust KT (1997) Nanostructured Mater 9:261

    Article  CAS  Google Scholar 

  19. Van Swygenhoven H, Derlet PM, Froseth AG (2004) Nature Materials 3:399

    Article  CAS  Google Scholar 

  20. Froseth A, Van Swygenhoven H, Derlet PM (2004) Acta Mater 52:2259

    Article  CAS  Google Scholar 

  21. Kumar KS, Van Swygenhoven H, Suresh S (2003) Acta Mater 51:5743

    Article  CAS  Google Scholar 

  22. Derlet PM, Van Swygenhoven H (2002) Scripta Mater 47:719

    Article  CAS  Google Scholar 

  23. Van Swygenhoven H (2002) Science 296:66

    Article  Google Scholar 

  24. Cheng S, Spencer JA, Milligan WW (2003) Acta Mater 51:4505

    Article  CAS  Google Scholar 

  25. Wang YM, Chen MW, Zhou FH, Ma E (2002) Nature 419:912

    Article  CAS  Google Scholar 

  26. Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Science 300:1275

    Article  CAS  Google Scholar 

  27. Ma E (2003) Nature Mater 2:7

    Article  CAS  Google Scholar 

  28. Wang YM, Ma E (2004) Acta Mater 52:1699

    Article  CAS  Google Scholar 

  29. Weertman JR (2002) Mater Sci Forum 386:519

    Article  Google Scholar 

  30. Koch CC (1993) Nanostructure Mater 2:109

    Article  CAS  Google Scholar 

  31. Masumura RA, Hazzledine PM, Pande CS (1998) Acta Mater 46:4527

    Article  CAS  Google Scholar 

  32. Weertman JR, Farkas D, Hemker K, Kung H, Mayo M, Mitra R, van Swygenhoven H (1999) MRS Bull 24:44

    CAS  Google Scholar 

  33. Ma E (2003) Scripta Mater 49:663

    Article  CAS  Google Scholar 

  34. Perepezko JH, Hebert RJ, Wilde G (2004) Mat Sci Eng A 375–77:171

    Article  CAS  Google Scholar 

  35. Inoue A (1999) Prog Mater Sci 43:365

    Article  Google Scholar 

  36. Gaffet E, Bernard F, Niepce J-C, Charlot F, Gras C, LeCaer G (1999) Mater J Chem 9:305

    Article  CAS  Google Scholar 

  37. Gaffet E, Bernard F (2002) Annales De Chimie-Science Des Materiaux 27:47

    Article  CAS  Google Scholar 

  38. Rawers J, Slavens G, Govier D, Dogan C, Doan R (1998) Metall Mater Trans A 27:3126

    Google Scholar 

  39. Hayes RW, Witkin D, Zhou F, Lavernia EJ (2004) Acta Mater 52:4259

    Article  CAS  Google Scholar 

  40. Hayes RW, Rodriguez R, Lavernia EJ (2001) Acta Mater 49:4055

    Article  CAS  Google Scholar 

  41. He L, Ma E (1995) Mater Sci Eng A 204:240

    Article  Google Scholar 

  42. Rawers J (1999) Nanostructured Mater 11:513

    Article  CAS  Google Scholar 

  43. Hida M, Asai K, Takemoto Y, Sakakibara A (1996) Mater Trans JIM 37:1679

    CAS  Google Scholar 

  44. Baláž P, Godočíková E, Kril’ová L, Lobotka P, Gock E (2004) Mater Sci Eng A 386:442

    Article  CAS  Google Scholar 

  45. Cheng S, Ma E, Wang YM, Kecskes LJ, Youssef KM, Koch CC, Trociewitz UP, Han K (2005) Acta Mater 53:1521

    Article  CAS  Google Scholar 

  46. Sanders PG, Eastman JA, Weertman JR (1997) Acta Mater 45:4019

    Article  CAS  Google Scholar 

  47. Youngdahl CJ, Sanders PG, Eastman JA, Weertman JR (1997) Scripta Mater 37:809

    Article  CAS  Google Scholar 

  48. Shaik GR, Milligan WW (1997) Metall Mater Trans A 28:895

    Google Scholar 

  49. Li HQ, Ebrahimi F (2004) Appl Phys Lett 84:4307

    Article  CAS  Google Scholar 

  50. Li HQ, Ebrahimi F (2003) Acta Mater 51:3905

    Article  CAS  Google Scholar 

  51. Legros M, Elliott BR, Rittner MN, Weertman JR, Hemker KJ (2000) Phil Mag A80:1017

    Google Scholar 

  52. Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Acta Mater 51:387

    Article  CAS  Google Scholar 

  53. Yoo SH, Sudarshan TS, Sethuram K, Subhash G, Dowding RJ (1999) Nanostructure Mater 12:23

    Article  Google Scholar 

  54. Srivatsan TS, Ravi BG, Naruka AS, Riester L, Yoo S, Sudarshan TS (2001) Mat Sci Eng A 311:22

    Article  Google Scholar 

  55. Wan J, Duan RG, Mukherjee AK (2005) Scripta Mater 53:663

    Article  CAS  Google Scholar 

  56. Kim HC, Shon IJ, Garay JE, Munir ZA (2004) Int J Refractory Metal Hard Mater 22:257

    Article  CAS  Google Scholar 

  57. Lowe TC, Valiev RZ (2000) JOM 52 No 4:27

    Google Scholar 

  58. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  59. Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5

    CAS  Google Scholar 

  60. Ferrasse S, Segal VM, Hartwig KT, Goforth RE (1997) Metall Mater Trans A 28:1047

    Google Scholar 

  61. Yapici GG, Karaman I, Luo ZP (2004) J Mater Res 19:2268

    Article  CAS  Google Scholar 

  62. Yapici GG, Karaman I, Luo ZP, Rack H (2003) Scripta Mater 49:1021

    Article  CAS  Google Scholar 

  63. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317

    Article  CAS  Google Scholar 

  64. Furukawa M, Horita Z, Nemoto M, Langdon TG (2001) J Mater Sci 36:2835

    Article  CAS  Google Scholar 

  65. Xu C, Furukawa M, Horita Z, Langdon TG (2004) J Alloys and Compounds 378:27

    Article  CAS  Google Scholar 

  66. Haouaoui M, Karaman I, Maier HJ, Hartwig KT (2004) Metall Mater Trans A 35:2935

    Google Scholar 

  67. Zhu YT, Lowe TC, Langdon TG (2004) Scripta Mat 51:825

    Article  CAS  Google Scholar 

  68. Delo DP, Semiatin SL (1999) Metall Mater Trans A 30:2473

    Google Scholar 

  69. Sergueeva AV, Song C, Valiev RZ, Mukherjee AK (2003) Mater Sci Eng A 339:159

    Article  Google Scholar 

  70. Liao XZ, Zhao YH, Zhu YT, Valiev RZ, Gunderov DV (2004) J Appl Phys 96:636

    Article  CAS  Google Scholar 

  71. Hartwig KT, Karaman I, Haouaoui M, Mathaudhu SN (2003) In: Senkov ON (ed) Proceedings of the 2003 NATO Advanced Research Workshop on Metallic Materials with High Structural Efficiency Kiev, Ukraine, September 6–13, 2003, Kluwer Academic Publishers, the Netherlands, 2004, p 91

  72. Haouaoui M, Karaman I (2003) Powder materials: current research and industrial practices III. In: FDS Marquis (ed) Proceedings of the international symposium on powder materials: current research and industrial practices iii, Materials Science & Technology 2003 meeting, Chicago, IL, November 9–12, 2003, edited by (TMS, Warrendale, 2003) p. 125

  73. Xia K, Wu X (2005) Scripta Mater 53:1225

    Article  CAS  Google Scholar 

  74. Senkov ON, Senkova SV, Scott JM, Miracle DB (2005) Mater Sci Eng A 393:12

    Article  CAS  Google Scholar 

  75. Leipert S (1999) The influence of equal channel angular extrusion on texture evolution in pure tantalum. MS Thesis, Texas A&M University, 1999

  76. Gibbs MA, Hartwig KT, Cornwell LR, Goforth RE, Payzant EA (1998) Scripta Mater 39:1699

    Article  CAS  Google Scholar 

  77. Haouaoui M, Hartwig KT, Payzant EA (2005) Acta Materialia 53:801

    Article  CAS  Google Scholar 

  78. Segal V, Goforth RE, Hartwig KT (1995) Texas A&M University, US Patent No 5,400,633

  79. Segal V (1996) US Patent No 5,513,512

  80. Segal V, Segal L (1996) US Patent No 5,600,989

  81. Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A 257:328

    Article  Google Scholar 

  82. Parasiris A, Hartwig KT, Srinivasan MN (2000) Scripta Mater 42:875

    Article  CAS  Google Scholar 

  83. Parasiris A, Hartwig KT (2000) Int J Refract Metals Hard Mater 18:23

    Article  CAS  Google Scholar 

  84. Pearson J (1997) Consolidation of Al6061 Powder by ECAE. MS Thesis, Texas A&M University, 1997

  85. Zapata H (1998) Application of Equal Channel Angular Extrusion to Consolidate Aluminum 6061 Powder. MS Thesis, Texas A&M University

  86. Hartwig KT, Zapata H, Parasiris A, Mathaudhu SN (2001) In: Marquis FDS, Thadhani N, Barrera EV (eds) Proceedings of the powder materials: current research and industrial practices symposium, (2001) TMS Publications 211

  87. Karaman I, Robertson J, Im J-T, Mathaudhu SN, Luo ZP, Hartwig KT (2004) Metall Mater Trans A 35:247

    Google Scholar 

  88. Robertson J, Im J-T, Karaman I, Hartwig KT, Anderson IE (2002) J Non-Crystal Solids 317:144

    Article  Google Scholar 

  89. Hartwig KT, Chase G, Belan J (2003) IEEE Trans Appl Superconductivity 13 N°2:3548

    Article  CAS  Google Scholar 

  90. Witkin D, Lee Z, Rodriguez R, Nutt S, Lavernia EJ (2003) Scripta Mater 49:297

    Article  CAS  Google Scholar 

  91. Zhang YW, Liu P, Lu C (2004) Acta Mater 52:5105

    Article  CAS  Google Scholar 

  92. Champion Y, Langlois C, Guerin S-Mailly, Langlois P, Bonnentien J-L, Hÿtch MJ (2003) Science 300:310

    Article  CAS  Google Scholar 

  93. Hague DC, Mayo MJ (1999) J Am Ceram Soc 82:545

    Article  CAS  Google Scholar 

  94. Graneau P (1987) Phys Lett 120:77

    Article  Google Scholar 

  95. Haouaoui M (2006) An investigation of bulk nanocrystalline copper fabricated via severe plastic deformation and nanoparticle consolidation using equal channel angular extrusion. PhD Thesis, Texas A&M University, 2006

  96. Smallman RE, Westmacott KH (1957) Phil Mag 2:669

    CAS  Google Scholar 

  97. Warren BE In: X-ray Diffraction, Dover, New York, NY, Chap 13

  98. ASTM Standard C20–92, ASTM, Philadelphia, PA, 15 (1996) 5

  99. Haouaoui M, Karaman I, Maier HJ (2006) Acta Materialia 54:5477

    Article  CAS  Google Scholar 

  100. Liao XZ, Zhou F, Lavernia EJ, Srinivasan SG, Baskes MI, He DW, Zhu YT (2003) Appl Phys lett 83:632

    Article  CAS  Google Scholar 

  101. Karaman I, Yapici GG, Chumlyakov YI, Kireeva IV (2005) Mater Sci Eng A 410:243

    Google Scholar 

  102. Han BQ, Zhang Z, Lavernia EJ (2005) Phil Mag Lett 85:97

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research under Grant No. N00014–05-1-0615 with Dr. Lawrence Kabacoff as program officer. Additional funding from National Science Foundation contract CMS 01-34554, Solid Mechanics and Materials Engineering Program, Directorate of Engineering, Arlington and Deutsche Forschungsgemeinschaft is gratefully acknowledged. The authors especially thank Mr. Larry Jones, Department of Energy Ames Laboratory, Materials Preparation Center, for his help for CIPing

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Karaman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karaman, I., Haouaoui, M. & Maier, H.J. Nanoparticle consolidation using equal channel angular extrusion at room temperature. J Mater Sci 42, 1561–1576 (2007). https://doi.org/10.1007/s10853-006-0987-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0987-6

Keywords

Navigation