Skip to main content
Log in

Stability aspects of bulk nanostructured metals and composites

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The requirement of thermal stability of nanocrystalline materials can be fulfilled with a composite approach. However, utilizing a two-phase approach includes additional constraints concerning the synthesis and processing, especially of massive nanostructured materials. Here, the potential of deformation processing for synthesizing nanoscale composite structures with uniform microstructures in bulk shape is analyzed for a series of Cu-rich alloys. The results are discussed with respect of governing materials properties that determine the feasibility of a composite approach in combination with severe plastic deformation to obtain massive nano-composite materials with high thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gleiter H (1989) Prog Mater Sci 33:223

    Article  CAS  Google Scholar 

  2. Gleiter H (2000) Acta Mater 48:1

    Article  CAS  Google Scholar 

  3. Würschum R, Reimann K, Grub S, Kübler A, Scharwächter P, Frank W, Kruse O, Carstanjen HD, Schaefer HE (1997) Phil Mag B 74:407

    Google Scholar 

  4. Chattopadhyay K, Goswami R (1997) Progr Mater Sci 42:287

    Article  CAS  Google Scholar 

  5. Rösner H, Weissmüller J, Wilde G (2004) Phil Mag Lett 84:673

    Google Scholar 

  6. Rösner H, Wilde G (2006) Scripta Mater 55:119

    Article  CAS  Google Scholar 

  7. Weissmüller J, Bunzel P, Wilde G (2004) Scripta Mater 51:813

    Article  CAS  Google Scholar 

  8. Wilde G (2006) Surf Interf Anal 38:1047

    Article  CAS  Google Scholar 

  9. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  10. Valiev RZ (2002) Nature 419:887

    Article  CAS  Google Scholar 

  11. Dinda GP, Rösner H, Wilde G (2005) Scripta Mater 52:577

    Article  CAS  Google Scholar 

  12. Wilde G, Rösner H, Dinda GP (2005) Adv Eng Mater 7 11

    Article  CAS  Google Scholar 

  13. Wilde G, Boucharat N, Dinda GP, Rösner H, Valiev RZ (2006) Mater Sci Forum 503–504: 425

  14. Wilde G, Boucharat N, Hebert RJ, Rösner H, Tong S, Perepezko JH (2003) Adv Eng Mater 5:125

    Article  CAS  Google Scholar 

  15. Boucharat N, Hebert RJ, Rösner H, Valiev RZ, Wilde G (2005) Scripta Mater 53:823

    Article  CAS  Google Scholar 

  16. Hebert RJ, Perepezko JH, Rösner H, Wilde G (2006) Scripta Mater 54:25

    Article  CAS  Google Scholar 

  17. Rösner H, Scheer P, Weissmüller J, Wilde G (2003) Phil Mag Lett 83:511

    Article  CAS  Google Scholar 

  18. Johnson WL (1986) Prog Matre Sci 30: 81

    Article  CAS  Google Scholar 

  19. Fecht HJ, Hellstern E, Fu Z, Johnson WL (1990) Metall Trans A 21:2333

    Google Scholar 

  20. Atzmon M, Veerhoeven JR, Gibson ER, Johnson WL (1984) Appl Phys Lett 45:1052

    Article  CAS  Google Scholar 

  21. Bordeaux F, Yavari R (1990) Z Metallkde 81:130

    CAS  Google Scholar 

  22. Dinda GP, Rösner H, Wilde G (2004) In: Zhu YT, Langdon TG, Valiev RZ, Semiatin SL, Shin DH, Lowe TC (eds) Ultrafine-grained materials III. TMS, p 309

  23. Dinda GP, Rösner H, Wilde G (2005) Mater Sci Eng A 410–411:328

  24. Sauvage X, Wetscher F, Pareige P (2005) Acta Mater 53: 2127

    CAS  Google Scholar 

  25. Wilde G, Sieber H, Perepezko JH (1999) Scripta Mater 40:779

    Article  CAS  Google Scholar 

  26. Butrymowicz DB, Manning JR, Read ME (1997) Diffusion Rate Data and Mass Transport Phenomena for Copper Systems. International Copper Research Association, NIST, Washington, USA, pp 193–198

  27. Wilde G, Dinda GP, Rösner H, to be published

  28. Weissmüller J (1993) Nanostruct Mater 3:261

    Article  Google Scholar 

  29. Massalski TB (ed) (1986) Binary alloy phase diagrams, vol 1. ASM, Metals Park, OH, p 29

  30. Murray JL (1984) Metall Trans A 15:261

    Google Scholar 

  31. Sheng HW, Wilde G, Ma E (2002) Acta Mater 50:475

    Article  CAS  Google Scholar 

  32. Uenishi K, Kobayashi KF, Ishihara KY, Shingu PH (1991) Mater Sci Eng A 134:1342

    Google Scholar 

  33. Najafabadi R, Srolovitz DJ, Ma E, Atzmon M (1993) J Appl Phys 74:3144

    Article  CAS  Google Scholar 

  34. Klassen T, Herr U, Averback RS (1997) Acta Mater 45:2921

    Article  CAS  Google Scholar 

  35. Heim U, Schwitzgebel G (1999) Nanostruct Mater 12:19

    Article  Google Scholar 

  36. Srdic VV, Winterer M, Hahn H (2000) J Am Ceram Soc 83:1853

    Article  CAS  Google Scholar 

  37. Nakagawa Y (1958) Acta Met 6:704

    Article  CAS  Google Scholar 

  38. Keblinski P, Wolf D, Phillpot SR, Gleiter H (1997) Phil Mag Lett 76:143

    Article  CAS  Google Scholar 

  39. Schiotz J (2004) Mater Sci Eng A 375–377:975

  40. Vilenkin A (2001) Interf Sci 9:323

    Article  CAS  Google Scholar 

  41. Mishra RS, Valiev RZ, McFadden SX, Mukherjee AK (1998) Mater Sci Eng A 252:174

    Google Scholar 

Download references

Acknowledgements

One of the authors (GW) gratefully acknowledges support by the DFG. The authors thank T. Scherer for TEM sample preparation and G.P. Dinda for rolling of the Zr–Cu sample. Moreover, the authors are indebted to Prof. R. Valiev for performing the HPT experiments and to Dr. H. Sieber for performing some of the TEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wilde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilde, G., Rösner, H. Stability aspects of bulk nanostructured metals and composites. J Mater Sci 42, 1772–1781 (2007). https://doi.org/10.1007/s10853-006-0986-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0986-7

Keywords

Navigation