Journal of Materials Science

, Volume 42, Issue 14, pp 5327–5334 | Cite as

Effect of strain rate and environment on the mechanical properties of the Ni–19Si–3Nb–0.15B–0.1C intermetallic alloy at high temperatures

  • C. C. Fu
  • J. S. C. JangEmail author
  • L. J. Chang
  • T. Y. Lin
  • C. M. Kuo


The effect of strain rate and environment on the mechanical behavior at different temperatures of the Ni–19Si–3Nb–0.15B–0.1C alloy is investigated by atmosphere-controlled tensile testing under various conditions at different strain rates and different temperatures). The results reveal that the Ni–19Si–3Nb–0.15B–0.1C alloy exhibits ductile mechanical behavior (UTS ∼ 1250 MPa, ε ~ 14%) at temperatures below 873 K under different atmosphere conditions. However, the alloy without boron and carbon addition shows ductile mechanical behavior only when the sample is tested in vacuum. This indicates that the microalloying of boron and carbon does overcome the environmental embrittlement from water vapor at test temperatures below 873 K for the Ni–19Si–3Nb base alloy. However, the boron and carbon doped alloy still suffers from embrittlement associated with oxygen at a medium high temperature (i.e. 973 K). In parallel, both of the ultimate tensile strength and elongation exhibit quite insensitive response with respect to the loading strain rate when tests are held at temperatures below 873 K. However, the ultimate tensile strength exhibits high dependence on the strain rate in air at temperatures above 873 K, decreasing the ultimate tensile strength with decreasing strain rate.


Ultimate Tensile Strength Tensile Elongation Ni3Si Dimple Fracture High Ultimate Tensile Strength 



The authors would like to gratefully acknowledge the sponsorship from the National Science Council of ROC under the project NSC93-2745-E-214-001.


  1. 1.
    Davis RG, Stoloff NS (1965) Trans TMS-AIME, 233:714Google Scholar
  2. 2.
    Kumar KS (1995) In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds-principle and practice, vol 2. John Wiley &Sons Ltd, Chichester, UK, pp 211–235Google Scholar
  3. 3.
    Evans TE, Hart AC (1971) Electrochem Acta 16:1955CrossRefGoogle Scholar
  4. 4.
    Grala EM (1960) Mechanical properties of intermetallic compounds. Wiley, New York, p 358Google Scholar
  5. 5.
    Takasugi T, Shindo D, Izumi O, Hirabayashi M (1990) Acta Metall 38:739CrossRefGoogle Scholar
  6. 6.
    Takasugi T, Nagashima M, Izumi O (1990) Acta Metall 38:747CrossRefGoogle Scholar
  7. 7.
    Baker I, Yuan J, Schulson EM (1993) Metall Trans A 24A:283CrossRefGoogle Scholar
  8. 8.
    Oliver WC (1989) In: Liu CT et al (eds) High temperature ordered intermetallic alloys III, vol 133. MRS Symposium Proceeding, Pittsburgh, PA, pp 397–402Google Scholar
  9. 9.
    Jang JSC, Tsau CH (1992) Mater Sci Eng A153:525CrossRefGoogle Scholar
  10. 10.
    Takasugi T (2000) J Intermetallics 8:575CrossRefGoogle Scholar
  11. 11.
    Takasugi T, Izumi O, Yoshida M (1991) J Mater Sci 26:1173; DOI 10.1007/BF00544451CrossRefGoogle Scholar
  12. 12.
    Takasugi T, Suenaga H, Izumi O (1991) J Mater Sci 26:1179; DOI 10.1007/BF00544452CrossRefGoogle Scholar
  13. 13.
    Liu CT, George EP, Oliver WC (1996) J Intermetallics 4:77CrossRefGoogle Scholar
  14. 14.
    Jang JSC, Wong SK, Lee PY (2000) Mater Sci Eng A281:17CrossRefGoogle Scholar
  15. 15.
    Jang JSC, Cheng CY, Wong SK (2001) Mater Chem Phys 72:66CrossRefGoogle Scholar
  16. 16.
    Jang JSC, Ou CJ, Cheng CY (2002) Mater Sci Eng A329–331C:453Google Scholar
  17. 17.
    Takasugi T, Ma CL, Hanada S (1995) Mater Sci Eng A192/193:407CrossRefGoogle Scholar
  18. 18.
    Heatherly L, George EP, Liu CT, Kumar KS (1998) Mater Sci Eng A245:80CrossRefGoogle Scholar
  19. 19.
    Pike LM, Liu CT (2000) Scripta Mater 42:265CrossRefGoogle Scholar
  20. 20.
    Zhu JH, Liu CT (2002) Intermetallics 10:309CrossRefGoogle Scholar
  21. 21.
    Varin RA, Song YK (2001) J Intermetallics 9:647CrossRefGoogle Scholar
  22. 22.
    Liu CT (1986) In: Stoloff NS, Koch CC, Liu CT, Izumi O (eds) High-temperature order intermetallic alloys II, vol 81. MRS Symposium, Pittsburgh, pp 355–367Google Scholar
  23. 23.
    Izumi O, Takasugi T (1988) J Mater Res 3:426CrossRefGoogle Scholar
  24. 24.
    Stoloff NS (1988) J Metals 40(12):18Google Scholar
  25. 25.
    Liu CT, White CL (1987) Acta Metall 35:643CrossRefGoogle Scholar
  26. 26.
    Liu CT, Mckamey CG, Lee EH (1990) Scripta Metall 24:385CrossRefGoogle Scholar
  27. 27.
    Liu CT, George EP (1990) Scripta Metall 24:1285CrossRefGoogle Scholar
  28. 28.
    George EP, Liu CT, Lin H, Pope DP (1995) Mater Sci Eng A 192/193:277CrossRefGoogle Scholar
  29. 29.
    Takasugi T, Izumi O (1986) Acta Metall 34:607CrossRefGoogle Scholar
  30. 30.
    Liu CT (1992) In: Liu CT et al (eds) Ordered intermetallics-physical metallurgy and mechanical behavior. Kluwer Academic Publishers, pp 321Google Scholar
  31. 31.
    George EP, Liu CT (1997) In: Nathal MV et al (eds) Structural intermetallics 1997. TMS, Warrendale, USA, pp 693–702Google Scholar
  32. 32.
    Liu CT, Lee EH, Mckamey CG (1989) Scripta Metall 23:875CrossRefGoogle Scholar
  33. 33.
    Stoloff NS, Liu CT (1994) J Intermetallics 2:75CrossRefGoogle Scholar
  34. 34.
    Wang J, Chung YW (2001) J Intermetallics 9:349CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • C. C. Fu
    • 1
  • J. S. C. Jang
    • 1
    Email author
  • L. J. Chang
    • 1
  • T. Y. Lin
    • 1
  • C. M. Kuo
    • 2
  1. 1.Department of Materials Science & EngineeringI-Shou UniversityKaohsiungTaiwan, ROC
  2. 2.Department of Mechanical and Automation EngineeringI-Shou UniversityKaohsiungTaiwan, ROC

Personalised recommendations