Journal of Materials Science

, Volume 42, Issue 14, pp 5318–5326 | Cite as

Microhardness of quenched and annealed isotactic polypropylene

  • Thomas KochEmail author
  • Sabine Seidler
  • Erich Halwax
  • Sigrid Bernstorff


The influence of molecular weight on the microhardness of quenched and subsequently annealed isotactic PP is shown. A clear dependence of microhardness on molecular weight and annealing temperature was detected. Even in the quenched state, where it was difficult to detect morphological differences between the materials, microhardness shows differences. In all states, quenched and annealed, the lower molecular weight samples have the higher hardness values. Up to an annealing temperature of 70 °C the hardness increases only slightly in all samples, above 80 °C a more pronounced increase was observed. For the microhardness of the samples annealed at 140 °C the ratio of the amorphous to the crystalline length is the dominating morphological parameter.


Differential Scanning Calorimetry Dynamic Mechanical Thermal Analysis WAXD Increase Annealing Temperature Isotactic Polypropylene 



Financial support by the European Union for the Elettra synchrotron measurements is gratefully acknowledged.


  1. 1.
    Zannetti R, Celotti G, Fichera A, Francesconi R (1969) Makromol Chem 128:137CrossRefGoogle Scholar
  2. 2.
    Bodor G, Grell M, Kello A (1964) Faserforsch Textil Technol 15:527Google Scholar
  3. 3.
    Gezowich DM, Geil PH (1968) Polym Eng Sci 8:202CrossRefGoogle Scholar
  4. 4.
    Hendra PJ, Vile J, Willis HA, Zichy V, Cudby MEA (1984) Polymer 25:785CrossRefGoogle Scholar
  5. 5.
    Wang Z-G, Hsiao BS, Srinivas S, Brown GM, Tsou AH, Cheng SZD, Stein RS (2001) Polymer 42:7561CrossRefGoogle Scholar
  6. 6.
    Androsch R, Wunderlich B (2001) Macromolecules 34:5950CrossRefGoogle Scholar
  7. 7.
    Alberola N, Fugier M, Petit D, Fillon B (1995) J Mater Sci 30:1187CrossRefGoogle Scholar
  8. 8.
    Grubb DT, Yoon DY (1986) Polym Commun 27:84Google Scholar
  9. 9.
    Gerardi F, Piccarolo S, Martorana A, Sapoundjieva D (1997) Macromol Chem Phys 198:3979CrossRefGoogle Scholar
  10. 10.
    Alberola N, Fugier M, Petit D, Fillon B (1995) J Mater Sci 30:860CrossRefGoogle Scholar
  11. 11.
    Ferrer-Balas D, Maspoch ML, Martinez AB, Santana OO (2001) Polymer 42:1697CrossRefGoogle Scholar
  12. 12.
    Baltá-Calleja FJ, Fakirov S (2000) Microhardness of polymers. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. 13.
    Baltá-Calleja FJ (1985) Adv Polym Sci 66:117CrossRefGoogle Scholar
  14. 14.
    Martínez-Salazar J, García Tijero JM, Baltá-Calleja FJ (1988) J Mater Sci 23:862CrossRefGoogle Scholar
  15. 15.
    Amitay-Sadovsky E, Wagner HD (1999) J Polym Sci B 37:523CrossRefGoogle Scholar
  16. 16.
    Osawa S, Porter RS (1996) Polymer 37:2095CrossRefGoogle Scholar
  17. 17.
    Schreyer GW, Zwinzscher K, Lüpke T, Wutzler A (1998) Kaut Gummi Kunstst 51:35Google Scholar
  18. 18.
    Martin B, Perena JM, Pastor JM, de Saja JA (1986) J Mater Sci Lett 5:1027CrossRefGoogle Scholar
  19. 19.
    Labour T, Ferry L, Gauthier C, Hajji P, Vigier G (1999) J Appl Polym Sci 74:195CrossRefGoogle Scholar
  20. 20.
    Seidler S, Koch T (2004) Macromol Symp 217:329CrossRefGoogle Scholar
  21. 21.
    Flores A, Aurrekoetxea J, Gensler R, Kausch HH, Balta-Calleja FJ (1998) Colloid Polym Sci 276:786CrossRefGoogle Scholar
  22. 22.
    Lorenzo V, Perena JM, Fatou JG (1989) J Mater Sci Lett 8:1455CrossRefGoogle Scholar
  23. 23.
    Chua SM, Henderson PJ (1991) J Mater Sci Lett 10:1379CrossRefGoogle Scholar
  24. 24.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  25. 25.
    Lamberti G, Brucato V (2003) J Polym Sci Phys 41:998CrossRefGoogle Scholar
  26. 26.
    Martorana A, Piccarolo S, Scichilone F (1997) Macromol Chem Phys 198:597CrossRefGoogle Scholar
  27. 27.
    Scharnowski D (2005) PhD thesis, University Halle-WittenbergGoogle Scholar
  28. 28.
    McAllister PB, Carter TJ, Hinde RM (1978) J Polym Sci Phys 16:49CrossRefGoogle Scholar
  29. 29.
    Vittoria V (1986) J Polym Sci Phys 24:451CrossRefGoogle Scholar
  30. 30.
    Caldas V, Brown GR, Nohr RS, MacDonald JG, Raboin LE (1994) Polymer 35:899CrossRefGoogle Scholar
  31. 31.
    Phillips RA, Wolkowicz MD (2005) In: Pasquini N (ed) Polypopylene handbook. Hanser, Munich, p 163Google Scholar
  32. 32.
    Vittoria V (1989) J Macromol Sci Phys B 28:97CrossRefGoogle Scholar
  33. 33.
    Baltá-Calleja FJ, Santa Cruz C, Bayer RK, Kilian HG (1990) Colloid Polym Sci 268:440CrossRefGoogle Scholar
  34. 34.
    Robelin-Souffache E, Rault J (1989) Macromolecules 22:3581CrossRefGoogle Scholar
  35. 35.
    Varga J (1995) In: Karger-Kocsis J (ed) Polypropylene. Structure, blends and composites, vol 1. Chapman & HallGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Thomas Koch
    • 1
    Email author
  • Sabine Seidler
    • 1
  • Erich Halwax
    • 2
  • Sigrid Bernstorff
    • 3
  1. 1.Institute of Materials Science and TechnologyVienna University of TechnologyViennaAustria
  2. 2.Institute of Chemical Technologies and AnalyticsVienna University of TechnologyViennaAustria
  3. 3.Sincrotrone TriesteBasovizzaItaly

Personalised recommendations