Skip to main content
Log in

Surface modification of macroporous glycidyl methacrylate based copolymers for selective sorption of heavy metals

  • Size-Dependent Effects
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two samples of macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate), poly(GMA-co-EGDMA), were synthesized by suspension copolymerization and modified with amines. Initial poly(GMA-co-EGDMA), and the samples modified with ethylene diamine [poly(GMA-co-EGDMA)-en], diethylene triamine [poly(GMA-co-EGDMA)-deta] and triethylene tetramine [poly(GMA-co-EGDMA)-teta], were characterized by mercury porosimetry, FTIR spectroscopy and elemental analysis. The most pronounced increase of specific surface area (75%) was observed for poly(GMA-co-EGDMA)-teta sample with smaller particles (D < 150 μm). The Cu(II) sorption was rapid, depending on porosity of amino-functionalized samples and ligand type. For poly(GMA-co-EGDMA)-deta and poly(GMA-co-EGDMA)-teta sorption half time required to reach 50% of total sorption capacity, t 1/2, were around 3 min.

Sorption capacities for Cu(II), Co(II), Cd(II) and Ni(II) as well as for Cr(VI), Co(II), Cd(II) and Ni(II) ions were determined under competitive conditions as a function of pH, ligand type and porosity at room temperature. The results indicate selectivity of poly(GMA-co-EGDMA)-deta for Cu(II) over Cd(II) of 3:1 and for Cu(II) over Ni(II) and Co(II) of 6:1. The decrease in particle size of poly(GMA-co-EGDMA)-teta caused the increase of sorption capacities for all metal ions. At pH 1.8 the selectivity of poly(GMA-co-EGDMA)-teta with smaller particles for Cr(VI) over Ni(II), Co(II) and Cd(II) ions was 8.5:1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AIBN:

2,2′-azobisisobutyronitrile

C 0 :

Concentration of the metal ions in the initial solution (mmolml−1)

C :

Concentration of the metal ions in the aqueous phase at time t (mmolml−1)

D :

Particle diameter (μm)

d :

Pore diameter (nm)

d m :

Mean pore diameter (nm)

d mi :

Mean incremental pore diameter (nm)

di :

Incremental pore diameter (nm)

d V/2 :

Pore diameter that corresponds to half of the pore volume (nm)

DETA:

Diethylene triamine

EGDMA:

Ethylene glycol dimethacrylate

EDA:

Ethylene diamine

GMA:

Glycidyl methacrylate

L :

Depth of the cylindrical pore (m)

m :

Amount of copolymer used in metal sorption experiments (g)

Poly(GMA-co-EGDMA):

Copolymer of glycidyl methacrylate and ethylene glycol dimethacrylate

Poly(GMA-co-EGDMA)-en:

Copolymer with attached ethylene diamine

Poly(GMA-co-EGDMA)-deta:

Copolymer with attached diethylene triamine

Poly(GMA-co-EGDMA)-teta:

Copolymer with attached triethylene tetramine

S :

Total pore surface area (m2 g−1)

S i :

Specific surface area (m2 g−1)

S Hg :

Specific surface area (m2 g−1)

ΔS i :

Incremental specific volume (m2 g−1)

t 1/2 :

Sorption half time (min)

TETA:

Triethylene tetramine

V :

Volume of the aqueous phase in metal sorption experiments (ml)

V S :

Specific pore volume (cm3 g−1)

V tot :

Total pore volume (cm3 g−1)

Q :

Metal sorption capacity (mmolg−1)

Q max :

Maximum metal sorption capacity (mmolg−1)

References

  1. Smith SD, Alexandratos SD (2000) Solvent Extr Ion Exch 18:779

    Article  CAS  Google Scholar 

  2. Coutinho FMB, Rezende SM, Barbosa CCRC (2001) React Funct Polym 49:235

    Article  CAS  Google Scholar 

  3. Sherrington DC (1998) Chem. Commun. 2286

  4. Van Berkel PM, Verweij PD, Driessen WL, Reedijk J, Sherrington DC (1992) Eur Polym J 28:747

    Article  Google Scholar 

  5. Bicak N, Sherrington DC, Sungur S, Tan N (2003) React Funct Polym 54:141

    Article  CAS  Google Scholar 

  6. Nastasović A, Jovanović S, Đorđević D, Onjia A, Jakovljević D, Novaković T (2004) React Funct Polym 58:139

    Article  Google Scholar 

  7. Nastasović A, Jovanović S, Jakovljević D, Stanković S, Onjia A (2004) J Serb Chem Soc 69:455

    Article  Google Scholar 

  8. Riqueza EC, de Santa Maria LC, Aguiar MRMP, Aguiar AP (2004) Mater Lett 58:502

    Article  CAS  Google Scholar 

  9. Kline GM (1959) In: Analytical chemistry of polymers. Interscience, New York, p 127

    Google Scholar 

  10. Jovanović S, Nastasović A, Jovanović N, Jeremić K, Savić Z (1994) Angew Makromol Chem 219:161

    Article  Google Scholar 

  11. Kun KA, Kunin R (1968) J Polym Sci A-1 6:2689

  12. Švec F (1986) Angew Makromol Chem 144:39

    Article  Google Scholar 

  13. Jovanović S, Nastasović A, Jovanović N, Jeremić K (1996) Mater Sci Forum 214:155

    Article  Google Scholar 

  14. Švec F, Frechet JMJ (1995) Chem Mater 7:707

    Article  Google Scholar 

  15. Okay O (2000) Progr Polym Sci 25:711

    Article  CAS  Google Scholar 

  16. De Santa Maria LC, Aguiar MRMP, Guimaraes PIC, Amorim MCV, Costa MAS, Almeida RSM, Aguiar AP, Oliveira AJB (2003) Eur Polym J 39:291

    Article  Google Scholar 

  17. Horak D, Švec F, Bleha M, Kalal J (1981) Angew Makromol Chem 95:109

    Article  CAS  Google Scholar 

  18. Van Berkel PM, Driessen WL, Reedijk J, Sherrington DC, Zitsmanis A (1995) React Funct Polym 27:15

    Article  Google Scholar 

  19. Švec F, Hrudkova H, Horak D, Kalal J (1977) Angew Makromol Chem 63:23

    Article  Google Scholar 

  20. Kalal J, Švec F, Maroušek V (1974) J Polym Sci 47:155

    CAS  Google Scholar 

  21. Webb PA, Orr C (1997) In: Analytical methods in fine particle technology. Micromeritics Instrument Corporation, Norcross, p 185

    Google Scholar 

  22. Paredes B, Gonzales S, Rendueles M, Villa-Garcia MA (2003) Acta Mater 51:6189

    Article  CAS  Google Scholar 

  23. Navarro-Rodriguez D, Rodriguez-Gonzales EJ, Romero-Garcia J, Jimenez-Regalado EJ, Guillon D (1998) Eur Polym J 34:1039

    Article  CAS  Google Scholar 

  24. Van Berkel PM, Driessen WL, Parlevliet FJ, Reedijk J, Sherrington DC (1997) Eur Polym J 33:129

    Article  Google Scholar 

  25. Kalalova E, Beiglova V, Kalal J, Švec F (1978) Angew Makromol Chem 72:143

    Article  CAS  Google Scholar 

  26. Van Berkel PM, Van Der Slot SC, Driessen WL, Reedijk J, Sherrington DC (1997) Eur Polym J 33:303

    Article  Google Scholar 

  27. Verweij PD, Van Der Geest JSN, Driessen WL, Reedijk J, Sherrington DC (1992) React Polym 18:191

    Article  CAS  Google Scholar 

  28. Hruby M, Hradil J, Beneš MA (2004) React Funct Polym 59:105

    Article  CAS  Google Scholar 

  29. Lindsay D, Sherrington DC, Greig JA, Hancock RD (1990) React Polym 12:59

    Article  CAS  Google Scholar 

  30. Lindsay D, Sherrington DC, Greig JA, Hancock RD (1990) React Polym 12:75

    Article  CAS  Google Scholar 

  31. Senkal BF, Bicak N (2001) React Funct Polym 49:151

    Article  CAS  Google Scholar 

  32. Denizli A, Salih B, Piskin E (1996) React Funct Polym 29:11

    Article  CAS  Google Scholar 

  33. Sanchez JM, Hidalgo M, Salvado V (2001) React Funct Polym 49:215

    Article  CAS  Google Scholar 

  34. Kesenci K, Say R, Denizli A (2002) Eur Polym J 38:1443

    Article  CAS  Google Scholar 

  35. De Santa Maria LC, Amorim MCV, Aguiar MRMP, Guimaraes PIC, Costa MAS, De Aguiar AP, Rezende PR, De Carvalho MS, Barbosa FG, Andrade JM, Ribeiro RCC (2001) React Funct Polym 49:133

    Article  Google Scholar 

  36. Jehličkova A, Kalal J, Švec F (1979) Angew Makromol Chem 81:87

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Serbian Ministry of Science and Environmental Protection, Project ON 142039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Nastasović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malović, L., Nastasović, A., Sandić, Z. et al. Surface modification of macroporous glycidyl methacrylate based copolymers for selective sorption of heavy metals. J Mater Sci 42, 3326–3337 (2007). https://doi.org/10.1007/s10853-006-0958-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0958-y

Keywords

Navigation