Journal of Materials Science

, Volume 41, Issue 20, pp 6861–6870 | Cite as

AFM and SEM characterization of iron oxide coated ceramic membranes

  • B. S. Karnik
  • M. J. Baumann
  • S. J. Masten
  • S. H. Davies


Alumina–zirconia–titania (AZT) ceramic membranes coated with iron oxide nanoparticles have been shown to improve water quality by significantly reducing the concentration of disinfection by-product precursors, and in the case of membrane filtration combined with ozonation, to reduce ozonation by-products such as aldehydes, ketones and ketoacids. Commercially available ceramic membranes with a nominal molecular weight cut-off of 5 kilodaltons (kD) were coated 20, 30, 40 or 45 times with sol suspension processed Fe2O3 nanoparticles having an average diameter of 4–6 nm. These coated membranes were sintered in air at 900 °C for 30 min. The effects of sintering and coating layer thickness on the microstructure of the ceramic membranes were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). AFM images show a decreasing roughness after iron oxide coating with an average surface roughness of ∼161 nm for the uncoated and ∼130 nm for the coated membranes. SEM showed that as the coating thickness increased, the microstructure of the coating changed from a fine grained (average grain size of ∼27 nm) morphology at 20 coating layers to a coarse grained (average grain size of ∼66 nm) morphology at 40 coating layers with a corresponding increase in the average pore size from ∼57 nm to ∼120 nm. Optimum water quality was achieved at 40 layers, which corresponds to a surface coating morphology consisting of a uniform, coarse-grained structure with open, nano-sized interconnected pores.


  1. 1.
    Shanbhag P, Guha A, Sirkar K (1998) Ind Eng Chem Res 37:4388CrossRefGoogle Scholar
  2. 2.
    Castro K, Zander A (1995) J Am Wat Works Assoc 87:50Google Scholar
  3. 3.
    Shen Z, Semmens M, Collins A (1990) Environ Technol 11:597Google Scholar
  4. 4.
    Hashino M, Mori Y, Fujii Y, Motoyama N, Kadokawa N, Hoshikawa H, Nishijima W, Okada M (2000) Water Sci Technol 41:17Google Scholar
  5. 5.
    Zuzek E, Catán S, Arciprete C, Dimitrijewits M, Almandoz M, Marchese J (2001) Granul Matter 3:145CrossRefGoogle Scholar
  6. 6.
    Zeng Z, Xiao X, Gui Z, Li L (1997) J Membr Sci 136:153CrossRefGoogle Scholar
  7. 7.
    Kim J, Somiya I (2001) Environ Technol 22:7CrossRefGoogle Scholar
  8. 8.
    Kim J, Somiya I, Fujii S (1999) In: Proceedings of the 14th Ozone World Congress, Dearborn, August 1999, p.131Google Scholar
  9. 9.
    Karnik B, Davies S, Chen K, Jaglowski D, Baumann M, Masten S (2005) Water Res 39:728CrossRefGoogle Scholar
  10. 10.
    Schlichter B, Mavrov V, Chmiel H (2004) Desalination 168:307CrossRefGoogle Scholar
  11. 11.
    Allemane H, Deloune B, Paillard H, Legube B (1993) Ozone Sci Eng 15:419Google Scholar
  12. 12.
    Karnik B, Davies S, Baumann M, Masten S (2005) Water Res 39:2839CrossRefGoogle Scholar
  13. 13.
    Allemane H, Deloune B, Paillard H, Legube B (1993) Ozone Sci Eng 15:419Google Scholar
  14. 14.
    Volk C, Roche P, Joret J, Paillard H (1997) Water Res 31:650CrossRefGoogle Scholar
  15. 15.
    Karnik B, Davies S, Baumann M, Masten S (2005) Environ Sci Technol 39:7656CrossRefGoogle Scholar
  16. 16.
    Mckenzie K, Marken F, Hyde M, Compton R (2002) New J Chem 26:625CrossRefGoogle Scholar
  17. 17.
    Cortalezzi M, Rose J, Barron A, Weisner M (2002) J Membr Sci 205:33CrossRefGoogle Scholar
  18. 18.
    Cortalezzi M, Rose J, Wells G, Bottero J, Barron A, Weisner M (2003) J Membr Sci 227:207CrossRefGoogle Scholar
  19. 19.
    Lu H, Hu J, Chen C, Sun H, Hu X, Yang D (2005) Ceram Int 31:481CrossRefGoogle Scholar
  20. 20.
    Chou K, Kao K, Huang C, Chen C (1999) J Porous Mater 6:217CrossRefGoogle Scholar
  21. 21.
    Bae D, Cheong D, Han K, Choi S (1998) Ceram Int 24:25CrossRefGoogle Scholar
  22. 22.
    Pedersen H, Tranto J, Høj J (1997) Key Eng Mater 132–136:1707CrossRefGoogle Scholar
  23. 23.
    Siriwardane R, Poston J Jr, Fisher E, Lee T, Dorris S, Balachandran U (2000) Appl Surf Sci 167:34CrossRefGoogle Scholar
  24. 24.
    Clesceri L, Greenberg A, Eaton A (eds) (1998) Standard methods for examination of water & wastewater. American Public Health Association PublishingGoogle Scholar
  25. 25.
    Munch J, Munch D, Winslow S, Wendelken S, Pepich B (1998) Method 556: Determination of carbonyl compounds in drinking water by pentafluorobenzylhydroxylamine derivatization and capillary gas chromatography with electron capture detection. USEPA, Cincinnati, OHGoogle Scholar
  26. 26.
    Barsoum M (2003) Fundamentals of ceramics. Institute of Physics Publishing, pp. 336Google Scholar
  27. 27.
    Karnik B (2006) The use of ozonation and catalytic ozonation combined with nanofiltration for the control of natural organic matter (NOM) and disinfection by-products (DBPs) in drinking water. Michigan State University, to be submitted May 2006Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • B. S. Karnik
    • 1
  • M. J. Baumann
    • 2
  • S. J. Masten
    • 1
  • S. H. Davies
    • 1
  1. 1.Department of Civil & Environmental EngineeringMichigan State UniversityEast LansingUSA
  2. 2.Department of Chemical Engineering & Materials ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations