Skip to main content
Log in

Texture evolution during hot-rolling and recrystallization in B2-type FeAl, NiAl and CoTi intermetallic compounds

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The texture evolution during the hot-rolling and the recrystallization of B2-type Fe–48Al, Ni–50Al and Co–50Ti (expressed by at.%) intermetallic compounds were investigated. By hot-rolling at 973 K, Fe–48Al showed a microstructure with coarse grains elongated along rolling direction, while Ni–50Al and Co–50Ti showed a deformed microstructure featured by the heavily distorted (elongated) grains and/or the deformation bands. The hot-rolling texture of Fe–48Al was composed of {111}<uvw>, while those of Ni–50Al and Co–50Ti were composed of {111}<110> and {111}<112>, respectively. After annealing, the recrystallized grains were preferentially nucleated at the grain boundaries for Fe–48Al, and in the heavily distorted regions or the deformation bands for Ni–50Al and Co–50Ti. The orientations of the recrystallized grains were similar with those of the deformed matrix, especially for Ni–50Al and Co–50Ti. The recrystallization textures were generally more dispersive than the hot-rolling texture. Based on these results, the texture evolution during the hot rolling and the recrystallization of the B2-type intermetallic compounds were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Noebe RD, Bowman RR, Nathal MV (1996) In: Stoloff NS, Sikka VK (eds) Physical metallurgy and processing of intermetallic compounds. Chapman & Hall, New York, pp 212–296

  2. MaKamey CG (1996) In: Stoloff NS, Sikka VK (eds) Physical metallurgy and processing of intermetallic compounds. Chapman & Hall, New York, pp 351–391

  3. Takasugi T, Izumi O (1987) Phys Stat Sol (a) 102:697

    CAS  Google Scholar 

  4. Takasugi T, Izumi O (1988) J Mater Sci 23:1265

    Article  CAS  Google Scholar 

  5. Kaneno Y, Takasugi T (2003) J Mater Sci 38:869

    Article  CAS  Google Scholar 

  6. Pang L, Han SM, Kumar KS (2002) Acta Mater 50:3623

    Article  CAS  Google Scholar 

  7. Lin D, Li D, Li Y Intermetallics 6(199):243

  8. Alexandeer DJ, Maziasz PJ, Wright JL (1998) Mater Sci Eng A258:276

    Google Scholar 

  9. Harris KE, Ebrahimi F, Garmestani H (1998) Mater Sci Eng A247:187

    CAS  Google Scholar 

  10. Khadkikar PS, Michal GM, Vedula K (1990) Metall Trans 21A:279

    CAS  Google Scholar 

  11. Dymek S, Hwang SJ, Dollar M Kallend JS, Nash P (1992) Scripta Metall Mater 27:161

    Article  CAS  Google Scholar 

  12. Margevicius RW, Lewandowski JJ (1993) Scripta Metall Mater 29:1651

    Article  CAS  Google Scholar 

  13. Margevicius RW, Cotton JD (1995) Acta Metall Mater 43:645

    Article  CAS  Google Scholar 

  14. Zhao XB (1998) J Mater Sci Lett 17:489

    Article  CAS  Google Scholar 

  15. Fischer-Buhner J, Raabe D, Wagner P, Gottstein G (1995) Scripta Metall Mater 33:1261

    Article  Google Scholar 

  16. Ahzi S (1999) Mater Sci Eng 7:841

    CAS  Google Scholar 

  17. Kaneno Y, Takasugi T, Hanada S (2001) Mater Sci Eng A302:215

    CAS  Google Scholar 

  18. Morris DG, Deevi SC (2002) Mater Sci Eng A329–331:573

    Google Scholar 

  19. Sakata T, Kohma H, Yasuda H, Umakoshi Y (2002) ISIJ Int 42:903

    CAS  Google Scholar 

  20. Rabbe D, Mao W (1995) Phil Mag A71:805

    Google Scholar 

  21. Rabbe D, Keichel J, Sun Z (1996) J Mater Sci 31:339

    Article  Google Scholar 

  22. Kad BK, Schoenfeld SE, Asaro RJ, Mckamey CG, Sikka VK (1997) Acta Mater 45:1333

    Article  CAS  Google Scholar 

  23. Huang YD, Yang WY, Chen GJ, Sun ZQ (2001) Intermetallics 9:331

    Article  CAS  Google Scholar 

  24. Zhu GH, Mao W, Yu Y, Brückner G (1999) Proc Int Conf Textures Mater (ICOTOM-12) Ed. by Szpunar JA NRC Research Press, Ottawa, 629–634

  25. Inoue H, Miwa N, Inakazu N (1996) Acta Mater 44:4825

    Article  CAS  Google Scholar 

  26. Kaneno Y, Yamaguchi T, Takasugi T (2005) J Mater Sci 40:733

    Article  CAS  Google Scholar 

  27. Schultz LG (1949) J Appl Phys 29:1030

    Article  Google Scholar 

  28. Inokuchi Y, Doherty RD (1978) Acta Metall 26:61

    Article  Google Scholar 

  29. Nagpal P, Baker I (1991) Metall Trans 21A:2281

    Google Scholar 

  30. Morris MA, George EP, Morris DG (1998) Mater Sci Eng A258:99

    CAS  Google Scholar 

  31. Xiao H, Baker I (1995) Acta Metal Mater 43:391

    Google Scholar 

  32. Humphreys FJ, Hatherly M (1995) Recrystallization and related annealing phenomena. Elsevier Science, Oxford

    Google Scholar 

  33. Mackenzie JK (1964) Acta Metall 12:223

    Article  CAS  Google Scholar 

  34. Brandon DG (1966) Acta Metall 12:1479

    Google Scholar 

  35. Umakoshi Y, Yamaguchi M (1980) Phil Mag A41:573

    Google Scholar 

  36. Umakoshi Y, Yamaguchi M (1981) Phil Mag A44:711

    Google Scholar 

  37. Noebe RD, Bowman RR, Nathal MV (1993) Inter Mater Rev 38:193

    CAS  Google Scholar 

  38. Takasugi T, Tsurisaki K, Izumi O, Ono S (1990) Phil Mag A61:785

    Google Scholar 

  39. Kim JT, Gibala R (1991) Mater Res Soc Symp Proc 213:261

    CAS  Google Scholar 

  40. Field RD, Lahrman DF, Darolia R (1991) Acta Metal Mater 39:2951

    Article  CAS  Google Scholar 

  41. Takasugi T, Yoshida M, Kawabata T (1992) Phil Mag A65:29

    Google Scholar 

  42. Dillamore IL, Roberts WT (1964) Acta Metall 12:281

    Article  CAS  Google Scholar 

  43. Baker I, Schulson EM (1984) Metal Trans A 15A:1129

    CAS  Google Scholar 

  44. Zhu G, Mao W, Yu Y (1999) Prog Nat Sci 9:849

    CAS  Google Scholar 

  45. Sebald R, Gottstein G (2002) Acta Mater 50:1587

    Article  CAS  Google Scholar 

  46. Aust KT, Rutter JW (1962) Trans AIME 224:111

    CAS  Google Scholar 

  47. Gottstein G, Nagpal P, Kim W (1989) Mater Sci Eng A108:165

    CAS  Google Scholar 

  48. Escher C, Neves S, Gottstein G (1998) Acta Mater 46:441

    Article  CAS  Google Scholar 

  49. Kaneno Y, Nakaaki I, Takasugi T (2002) Intermetallics 10:693

    Article  CAS  Google Scholar 

  50. Kaneno Y, Nakaaki I, Takasugi T (2002) J Mater Res 17:2567

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Grant-in-aid for Scientific Research from the Ministry of Education, Culture, Sports and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Kaneno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneno, Y., Yamaguchi, T. & Takasugi, T. Texture evolution during hot-rolling and recrystallization in B2-type FeAl, NiAl and CoTi intermetallic compounds. J Mater Sci 41, 6871–6880 (2006). https://doi.org/10.1007/s10853-006-0937-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0937-3

Keywords

Navigation