Skip to main content

Hygrothermal effects on the shear properties of carbon fiber/epoxy composites

Abstract

The environmental factors, such as humidity and temperature, can limit the applications of composites by deteriorating the mechanical properties over a period of time. Environmental factors play an important role during the manufacture step and during composite’s life cycle. The degradation of composites due to environmental effects is mainly caused by chemical and/or physical damages in the polymer matrix, loss of adhesion at the fiber/matrix interface, and/or reduction of fiber strength and stiffness. Composite’s degradation can be measure by shear tests because shear failure is a matrix dominated property. In this work, the influence of moisture in shear properties of carbon fiber/epoxy composites (laminates [0/0]s and [0/90]s) have been investigated. The interlaminar shear strength (ILSS) was measured by using the short beam shear test, and Iosipescu shear strength and modulus (G 12) have been determinated by using the Iosipescu test. Results for laminates [0/0]s and [0/90]s, after hygrothermal conditioning, exhibited a reduction of 21% and 18% on the interlaminar shear strenght, respectively, when compared to the unconditioned samples. Shear modulus follows the same trend. A reduction of 14.1 and 17.6% was found for [0/0]s and [0/90]s, respectively, when compared to the unconditioned samples. Microstructural observations of the fracture surfaces by optical and scanning electron microscopies showed typical damage mechanisms for laminates [0/0]s and [0/90]s.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Costa ML, Almeida SFM, Rezende MC (2001) Compos Sci Technol 61:2101

    CAS  Article  Google Scholar 

  2. 2.

    Rikards R (2000) Comput Struct 76:11

    Article  Google Scholar 

  3. 3.

    Hillermeier RW, Seferis JC (2001) Compos Part A 32:721

    Article  Google Scholar 

  4. 4.

    Cândido GM, Almeida SFM (1993) Compos Struct 25:287

    Article  Google Scholar 

  5. 5.

    Berglund LA, Kenny JM (1991) SAMPE J 27(2):27

    CAS  Google Scholar 

  6. 6.

    Peters ST (1998) Handbook of composites. Chapman and Hall, London

    Book  Google Scholar 

  7. 7.

    Sala G (2000) Compos Part B 31:357

    Article  Google Scholar 

  8. 8.

    Zhang Z, Hartwig G (1998) Cryogenics 38:401

    CAS  Article  Google Scholar 

  9. 9.

    Cândido GM, Rezende MC, Almeida SFM (2000) Mater Res 3(2):11

    Article  Google Scholar 

  10. 10.

    Zhang PQ, Ruan JH, Li WZ (2001) Cryogenics 41:245

    CAS  Article  Google Scholar 

  11. 11.

    Chiang MYM, He J (2002) Compos Part B 33:461

    Article  Google Scholar 

  12. 12.

    Degallaix G, Hassaini D, Vittecoq E (2002) Int J Fatigue 24:319

    CAS  Article  Google Scholar 

  13. 13.

    Unal Ö, Barard DJ, Anderson IE (1999) Scripta Mater 40(3):271

    CAS  Article  Google Scholar 

  14. 14.

    John NAS, Brown JR (1998) Compos Part A 29:939

    Article  Google Scholar 

  15. 15.

    Tarnopol’skii YM, Arnautov AK, Kulakov AVL (1999) Compos Part A 30:879

    Article  Google Scholar 

  16. 16.

    Barnes JA, Kumosa K, Hull D (1987) Compos Sci Technol 28:251

    CAS  Article  Google Scholar 

  17. 17.

    Odegard G, Kumosa M (1999) J Compos Mater 33(21):1981

    CAS  Article  Google Scholar 

  18. 18.

    Botelho EC, Lauke B, Figiel L, Rezende MC (2003) Compos: Sci Technol 63:1843

    CAS  Google Scholar 

  19. 19.

    Iosipescu N (1967) J Mater 2(3):537

    Google Scholar 

  20. 20.

    Tang CY, Lee TC, Rao B (2003) J Mater Process Technol 6754:1

    Google Scholar 

  21. 21.

    Bansal A, Kumosa M (1998) Eng Fract Mech 59(1):89

    Article  Google Scholar 

  22. 22.

    Almeida JRM, Monteiro SN (1999) Polym Test 18:407

    Article  Google Scholar 

  23. 23.

    Li TQ, Zhang MQ, Zeng HM (2001) Compos Part A 32:1727

    Article  Google Scholar 

  24. 24.

    Marín JC, Cañas J, París F, Morton J (2002) Compos Part A 33:101

    Article  Google Scholar 

  25. 25.

    Han L, Piggott MR (2002) Compos Part A 33:35

    Article  Google Scholar 

  26. 26.

    Odegard G, Kumosa M (2000) Compos Sci Technol 60:2917

    CAS  Article  Google Scholar 

  27. 27.

    ANNUAL AMERICAN STANDARD TEST METHODS. Standard test method for shear properties of composite materials by the V-Notched Beam Method. American Society for Testing and Materials, Philadelphia, PA, 1993 (ASTM-D 5379/D 5379M)

  28. 28.

    ANNUAL AMERICAN STANDARD TEST METHODS. Standard test method for moisture in a graphite sample. American Society for Testing and Materials, Philadelphia, PA, 1985 (ASTM-C 562-85)

  29. 29.

    ANNUAL AMERICAN STANDARD TEST METHODS. Standard test method for APPARENT interlaminar shear strenght of parallel fiber composites by short-beam method. American Society for Testing and Materials, Philadelphia, PA, 1988 (ASTM-D 2344-84(1503))

  30. 30.

    Pastore CM, Gowayed YA (1994) J Compos Technol Res 16(1):32

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support received from FAPESP under grants 02/01288-3 and 03/04240-4. The authors are indebted to Dr. José Maria Marlett from EMBRAER for helping to process the composite materials used in this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. C. Botelho.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Botelho, E.C., Pardini, L.C. & Rezende, M.C. Hygrothermal effects on the shear properties of carbon fiber/epoxy composites. J Mater Sci 41, 7111–7118 (2006). https://doi.org/10.1007/s10853-006-0933-7

Download citation

Keywords

  • Shear Strength
  • Environmental Conditioning
  • Interlaminar Shear Strength
  • Iosipescu Shear Test
  • Hygrothermal Effect