Skip to main content
Log in

Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Commercial purity titanium was deformed by accumulative roll-bonding (ARB) process up to 8 cycles (equivalent strain of 6.4) at ambient temperature. This is the first study on ultra-high straining of h.c.p. metals by the ARB process. The microstructure of the ARB-processed specimens showed two kinds of characteristic ultrafine microstructures. One was the lamellar boundary structure elongated along RD, which has been also reported in the ARB-processed cubic metals. The lamellar boundary spacing decreased with increasing ARB strain and reached about 80 nm after 5 ARB cycles. The other microstructure was the equiaxed grains having mean grain size of 80–100 nm. Such a fine and equiaxed grain structure has not yet been reported in the as-ARB-processed materials before. The fraction of the equiaxed grains increased as the ARB process proceeded, and 90% of the specimen was filled with the equiaxed grains after 8 ARB cycles. As the number of the ARB process increased, the tensile strength increased and the total elongation decreased gradually. After 6 ARB cycles, the specimen exhibited almost the same mechanical properties as that of commercial Ti-6Al-4V alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Segal VM (1995) Mater Sci Eng A 197:157

    Article  Google Scholar 

  2. Belyakov A, Kaibyshev R (1995) Nanostruct Mater 6:893

    Article  Google Scholar 

  3. Iwahashi Y, Furukawa M, Horita Z, Nemoto M, Langdon TG (1998) Metall Mater Trans A 29:2245

    Google Scholar 

  4. Islamgaliev RK, Yunusova NF, Sabirov IN, Sergueeva AV, Valiev RZ (2001) Mater Sci Eng A 319:877

    Article  Google Scholar 

  5. Tsuji N, Saito Y, Lee SH (2003) Minamino Y Adv Eng Mater 5:38

    Google Scholar 

  6. Huang X, Tsuji N, Hansen N, Minamino Y (2003) Mater Sci Eng A 340:265

    Article  Google Scholar 

  7. Tsuji N, Kamikawa N, Ninamino Y (2004) Mater Sci Froum 467–470:341

    Article  Google Scholar 

  8. Hansen N, Jensen DJ (1999) Philos Trans R Soc Lond A 357:1447

    Article  CAS  Google Scholar 

  9. Yoo MH (1981) Metall Trans A 12A:409

    Google Scholar 

  10. Propov AA, Pyshmintsev YUI, Demakov SL, Illarionov AG, Lowe TC, Segeyeva AV, Valiev RZ (1997) Scr Mater 37:1089

    Article  Google Scholar 

  11. Salishchev GA, Galeyev RM, Malysheva SP, Myshleaev MM (1999) Nanostruct Mater 11:407

    Article  CAS  Google Scholar 

  12. Stolyarov VV, Zhu YT, Lowe TC, Islamgaliev RK, Valiev RZ (1999) Nanostruct Mater 11:947

    Article  CAS  Google Scholar 

  13. Sergueeva AV, Stolyarov VV, Valiev RV, Mukhrjee AK (2001) Scr Mater 45:747

    Article  CAS  Google Scholar 

  14. Vinogradov YUA, Stolyarv VV, Hashimoto S (2001) Valiev RZ Mater Sci Eng A 318:163

    Article  Google Scholar 

  15. Stolyarov VV, Zhu YT, Alexandrov IV, Lowe TC, Valiev RZ (2003) Mater Sci Eng A 343:43

    Article  Google Scholar 

  16. Stolyarov VV, Zhu YT, Raab GI, Zharikov AI, Valiev RZ (2004) Mater Sci Eng A 385:309

    Article  CAS  Google Scholar 

  17. Mironov YUS, Salishchev GA, Myshlyaev MM, Pippan R (2006) Mater Sci Eng A 418:257

    Article  CAS  Google Scholar 

  18. Dinda GP, Rösner H (2005) Wilde G Scr Mater 52:577

    Article  CAS  Google Scholar 

  19. Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Scr Mater 39:1221

    Article  CAS  Google Scholar 

  20. Tsuji N, Saito Y, Utsunomiya H, Tanigawa S (1999) Scr Mater 40:795

    Article  CAS  Google Scholar 

  21. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579

    Article  CAS  Google Scholar 

  22. Hansen N, Huang X, Ueji R, Tsuji N (2004) Mater Sci Eng A 387–389:191

    Google Scholar 

  23. Tsuji N, Ueji R, Minamino Y (2002) Scr Mater 47:69

    Article  CAS  Google Scholar 

  24. Kamikawa N, Tsuji N, Minamino Y (2004) Sci Technol Adv Mater 5:163

    Article  CAS  Google Scholar 

  25. Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Scr Mater 47:893

    Article  CAS  Google Scholar 

  26. Chun YB, Yu SH, Semiatin SL, Hwang SK (2005) Mater Sci Eng A 398:209

    Article  CAS  Google Scholar 

  27. Chichili DR, Ramesh KT, Hemker KJ (2004) J Mech Phys Solids 52:1889

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present research was financially supported by the twenty-first century COE program, the Center of Excellence for Advanced Structural and Functional Materials Design at Osaka University through the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the Grant-in-Aid for Scientific Research (C), project No.17560632 in 2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Terada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terada, D., Inoue, S. & Tsuji, N. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process. J Mater Sci 42, 1673–1681 (2007). https://doi.org/10.1007/s10853-006-0909-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0909-7

Keywords

Navigation