Skip to main content
Log in

Processing and behavior of nanostructured metallic alloys and composites by cryomilling

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recent interest in nanostructured materials stems, not only from their potential use in a variety of applications, but also from the reported discovery of novel fundamental phenomena. The consolidation of cryomilled powder provides a potential pathway towards large scale manufacturing of nanostructured metallic materials. This approach typically engenders the mechanical attrition of powders in liquid nitrogen, followed by consolidation, using established commercial techniques, such as isostatic pressing and extrusion. In this overview paper, published data are reviewed and discussed with particular emphasis on the following topics: nanostructure evolution mechanisms; primary consolidation and secondary processing methods; thermal stability of cryomilled materials; and mechanical behavior of consolidated materials. Recent mechanical behavior data and the associated mechanisms of cryomilled Al alloys are discussed in an effort to shed light into the fundamental behavior of ultrafine grained and nanostructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Koch CC (ed) (2002) Nanostructured materials: processing, properties and potential applications. Noyes Publications (William Andrew Publishing), Norwich, NY

  2. Suryanarayana C (2001) Prog Mater Sci 46:1

    Article  CAS  Google Scholar 

  3. Luton MJ, Jayanth CS, Disko MM, Matras S, Vallone J (1989) In: Materials Research Society (ed) MRS Proc, vol 132, p 79

  4. Perez RJ, Jiang HG, Dogan CP, Lavernia EJ (1998) Metall Mater Trans A 29A:2469

    CAS  Google Scholar 

  5. Zhou F, Liao XZ, Zhu YT, Dallek S, Lavernia EJ (2003) Acta Mater 51:2777

    CAS  Google Scholar 

  6. Tellkamp VL, Melmed A, Lavernia EJ (2001) Metall Mater Trans A 32A:2335

    CAS  Google Scholar 

  7. Rodriguez R, Hayes RW, Berbon PB, Lavernia EJ (2003) Acta Mater 51:911

    Article  CAS  Google Scholar 

  8. Han BQ, Lee Z, Nutt SR, Lavernia EJ, Mohamed FA (2003) Metall Mater Trans A 34A:603

    CAS  Google Scholar 

  9. Han BQ, Lee Z, Witkin D, Nutt SR, Lavernia EJ (2005) Metall Mater Trans A 36A:957

    CAS  Google Scholar 

  10. Youssef KM, Scattergood RO, Murty KL, Koch CC (2004) Appl Phys Lett 85:929

    Article  CAS  Google Scholar 

  11. Fecht HJ (1995) NanoStruct Mater 6:33

    Article  CAS  Google Scholar 

  12. Benjamin JS, Volin TE (1974) Metall Trans A 5:1929

    CAS  Google Scholar 

  13. Mautice DR, Courtney TH (1990) Metall Trans A 21:289

    Google Scholar 

  14. Mautice DR, Courtney TH (1995) Metall Mater Trans A 26:2437

    Google Scholar 

  15. Liao XZ, Huang JY, Zhu YT, Zhou F, Lavernia EJ (2003) Philos Magn A 83:3065

    Article  CAS  Google Scholar 

  16. Zhou F, Rodriguez R, Lavernia EJ (2002) Mater Sci Forum 386–388:409

    Article  Google Scholar 

  17. Eckert J, Holzer JC, Krill ICE, Johnson WL (1992) J Mater Res 7:1751

    CAS  Google Scholar 

  18. Mohamed FA (2003) Acta Mater 51:4107

    Article  CAS  Google Scholar 

  19. Ye J, He J, Schoenung JM (2006) Metall Mater Trans A (in print)

  20. Ye J, Han BQ, Lee Z, Ahn B, Nutt SR, Schoenung JM (2005) Scr Mater 53:481

    Article  CAS  Google Scholar 

  21. Tang F, Hagiwara M, Schoenung JM (2005) Scr Mater 53:619

    Article  CAS  Google Scholar 

  22. Chung KH, He J, Shin DH, Schoenung JM (2003) Mater Sci Eng A 356:23

    Article  CAS  Google Scholar 

  23. Fogagnolo JB, Ruiz-Navas EM, Robert MH, Torralba JM (2002) Scr Mater 47:243

    Article  CAS  Google Scholar 

  24. Groza JR, Dowding RJ (1996) NanoStruct Mater 7:749

    Article  CAS  Google Scholar 

  25. Bourell DL, Groza JR (2002) ASM handbook vol 7—Powder metal technologies and applications, vol 7. ASM International, Materials Park, OH

  26. Groza JR (2002) Nanostructured materials: processing, properties and potential applications. Noyes Publications, Norwich, New York, p 115

  27. Ashby MF (1991) Powder metallurgy: an overview. The Institute of Metals, London, p 144

  28. Atkinson HV, Davies S (2000) Metall Mater Trans A 31A:2981

    CAS  Google Scholar 

  29. Lee Z, Rodriguez R, Hayes RW, Lavernia EJ, Nutt SR (2003) Metall Mater Trans A 34A:1473

    CAS  Google Scholar 

  30. Zhang Z, Han BQ, Witkin D, Ajdelsztajn L, Lavernia EJ (2006) Scr Mater 54:869

    Article  CAS  Google Scholar 

  31. Lynn-Ferguson B, Smith OD (1984) ASM handbook vol 7—Powder metallurgy, vol 7. ASM International, Materials Park, p 537

  32. Anderson RL, Groza J (1988) Metal Powder Report 43:678

    Google Scholar 

  33. Chan HW (1988) Mater Design 9:355

    Article  CAS  Google Scholar 

  34. Witkin D, Han BQ, Lavernia EJ (2005) J Mater Res 20:2117

    Article  CAS  Google Scholar 

  35. Park YS, Chung KH, Kim NJ, Lavernia EJ (2004) Mater Sci Eng A 374:211

    Article  CAS  Google Scholar 

  36. Han BQ, Lavernia EJ, Mohamed FA (2005) Metall Mater Trans A 36A:345

    CAS  Google Scholar 

  37. Witkin DB, Lavernia EJ (2006) Prog Mater Sci 51:1

    Article  CAS  Google Scholar 

  38. Han BQ, Huang JY, Zhu YT, Lavernia EJ (2006) Scr Mater 54:1175

    Article  CAS  Google Scholar 

  39. Han BQ, Zhang Z, Lavernia EJ (2005) Philos Magn Lett 85:97

    Article  CAS  Google Scholar 

  40. Roy I, Chauhan M, Mohamed FA (2006) Metall Mater Trans A 37A:721

    CAS  Google Scholar 

  41. Tang F, Schoenung JM (2006) A paper in preparation

  42. Beck PA, Kremer JC, Demer LJ, Holzworth ML (1948) Trans TMS-AIME 175:372

    Google Scholar 

  43. Burke JE (1949) Trans TMS-AIME 180:73

    Google Scholar 

  44. Michels A, Krill CE, Ehrhardt H, Birringer R, Wu DT (1999) Acta Mater 47:2143

    Article  CAS  Google Scholar 

  45. Chang SY, Lee JG, Park KT, Shin DH (2001) Mater Trans 42:1074

    Article  CAS  Google Scholar 

  46. Koch CC, Morris DG, Lu K, Inoue A (1999) MRS Bull 24:54

    CAS  Google Scholar 

  47. Wang Y, Chen M, Zhou F, Ma E (2002) Nature 419:912

    Article  CAS  Google Scholar 

  48. Witkin D, Lee Z, Rodriguez R, Nutt S, Lavernia E (2003) Scr Mater 49:297

    Article  CAS  Google Scholar 

  49. Pao PS (2005) Unpublished data on fracture toughness of cryomilled Al alloys

  50. Witkin D, Han BQ, Lavernia EJ (2006) Metall Mater Trans A 37A:185

    CAS  Google Scholar 

  51. Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Scr Mater 54:251

    Article  CAS  Google Scholar 

  52. Weertman JR (1993) Mater Sci Eng A166:161

    CAS  Google Scholar 

  53. Hull D, Bacon DJ (1984) Introduction to dislocations. Pergamon Press, Oxford

  54. Kim YW, Bidwell LR (1982) Scr Metall 16:799

    Article  Google Scholar 

  55. Wilsdorf HGF, Kuhlmann-Wilsdorf D (1993) Mater Sci Eng A164:1

    CAS  Google Scholar 

  56. Last HR, Garrett RK (1996) Metall Mater Trans A 27A:737

    CAS  Google Scholar 

  57. Mukai T, Kawazoe M, Higashi K (1998) NanoStructured Mater 10:755

    Article  CAS  Google Scholar 

  58. Hayes RW, Rodriguez R, Lavernia EJ (2001) Acta Mater 49:4055

    Article  CAS  Google Scholar 

  59. Hasegawa T, Miura T, Takahashi T, Yakou T (1992) ISIJ Int 32:902

    CAS  Google Scholar 

  60. Sun XK, Cong HT, Sun M, Yang MC (2000) Metall Mater Trans A 31A:1017

    CAS  Google Scholar 

  61. Champion Y, Langlois C, Guerin-Mailly S, Langlois P, Bonnentien J-L, Hytch MJ (2003) Science 300:310

    Article  CAS  Google Scholar 

  62. Kuhlmann-Wilsdorf D, Wilsdorf HGF (1992) Phys Status Solidi (a) 172:235

    CAS  Google Scholar 

  63. Dehiya BS, Weertman JR (1997) In: Earthman JC, Mohamed FA (eds) Creep and fracture of engineering materials and structures. The Minerals, Metals & Materials Society, p 129

  64. Kuhlmann-Wilsdorf D (1999) Philos Magn A 79:955

    Article  CAS  Google Scholar 

  65. Kral R (1996) Phys Status Solidi (a) 157:255

    Article  CAS  Google Scholar 

  66. Humphreys FJ, Hatherly M (1995) Recrystallization and related annealing phenomena. Pergamon, New York, p 127

  67. Hariprasad S, Sastry SML, Jerina KL (1996) Acta Mater 44:383

    Article  CAS  Google Scholar 

  68. Hayes RW, Witkin D, Zhou F, Lavernia EJ (2004) Acta Mater 52:4259

    Article  CAS  Google Scholar 

  69. Han BQ, Mohamed FA, Bampton CC, Lavernia EJ (2005) Metall Mater Trans A 36A:2081

    CAS  Google Scholar 

  70. Lesuer DR, Syn CK, Sherby OD, Wadsworth J, Lewandowski JJ, Hunt JWH (1996) Int Mater Rev 41:169

    CAS  Google Scholar 

  71. Soboyejo W (2003) Mechanical properties of engineered materials. Marcel Dekker, Inc., New York, p 583

Download references

Acknowledgements

Financial support from the Office of Naval Research (Grant No. N00014-04-1-0370) and US Marine Corps (Contract No. N00014-03-C-0163) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Q. Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, B.Q., Ye, J., Tang, F. et al. Processing and behavior of nanostructured metallic alloys and composites by cryomilling. J Mater Sci 42, 1660–1672 (2007). https://doi.org/10.1007/s10853-006-0907-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0907-9

Keywords

Navigation