Skip to main content
Log in

Characteristics of face-centered cubic metals processed by equal-channel angular pressing

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This review surveys the characteristics of face-centered cubic (fcc) metals and alloys processed by equal-channel angular pressing (ECAP). The significance of the Hall–Petch relationship for ultra-fine grained structures is examined and the dependence of the saturated stress obtained in ECAP on the absolute melting temperature is described and discussed. In addition, the flow processes at low temperatures in ultrafine-grained materials and the microstructural evolution of the dislocation densities and precipitates in some alloys of practical importance are also considered briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hall EO (1951) Proc Phys Soc B64:747

    CAS  Google Scholar 

  2. Petch NJ (1953) J Iron Steel Inst 174:25

    CAS  Google Scholar 

  3. Edington JW, Melton KN, Cutler CP (1976) Prog Mater Sci 21:61

    Article  CAS  Google Scholar 

  4. Langdon TG (1994) Acta Metall Mater 42:2437

    Article  CAS  Google Scholar 

  5. Chinh NQ, Illy J, Juhász A, Lendvai J (1995) Phys Stat Sol (a) 149:583

    Article  CAS  Google Scholar 

  6. Nieh TG, Wadsworth J, Sherby OD (1997) Superplasticity in metals, ceramics. Cambridge University Press, Cambridge, UK, p 290

  7. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer M, Zhu YT (2006) JOM 58(4):33

    Google Scholar 

  8. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scripta Mater 35:143

    Article  CAS  Google Scholar 

  9. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1997) Acta Mater 45:4733

    Article  CAS  Google Scholar 

  10. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  11. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  12. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317

    Article  CAS  Google Scholar 

  13. Hasegawa H, Komura S, Utsunomiya A, Horita Z, Furukawa M, Nemoto M, Langdon TG (1999) Mater Sci Eng A265:188

    CAS  Google Scholar 

  14. Komura S, Horita Z, Nemoto M, Langdon TG (1999) J Mater Res 14:4044

    CAS  Google Scholar 

  15. Vinogradov A, Hashimono S, Patlan V, Kitagawa K (2001) Mater Sci Eng A319–321:862

    Google Scholar 

  16. Vinogradov A, Suyuki T, Hashimoto S, Kitagawa K, Kuynetsov A, Dobatkin S (2006) Mater Sci Forum 503–504:971

    Google Scholar 

  17. Hadzima B, Janecek M, Hellmig RJ, Kutnyakova Y, Estrin Y (2006) Mater Sci Forum 503–504:883

    Google Scholar 

  18. Zhilyaev AP, Gubicza J, Nurislamova G, Révész Á, Suriñach S, Baró MD, Ungár T (2003) Phys Stat Sol (a) 198:263

    Article  CAS  Google Scholar 

  19. Neishi K, Horita Z, Langdon TG (2002) Mater Sci Eng A325:54

    CAS  Google Scholar 

  20. Yamashita A, Yamaguchi D, Horita Z, Langdon TG (2000) Mater Sci Eng A287:100

    CAS  Google Scholar 

  21. Horita Z, Furukawa M, Nemoto M, Barnes AJ, Langdon TG (2000) Acta Mater 48:3633

    Article  CAS  Google Scholar 

  22. Chinh NQ, Horváth G, Horita Z, Langdon TG (2004) Acta Mater 52:3555

    Article  CAS  Google Scholar 

  23. Hollomon JH (1945) Trans AIME 162:268

    Google Scholar 

  24. Voce E (1948) J Inst Metals 74:537

    CAS  Google Scholar 

  25. Suzuki T, Vinogradov A, Hashimoto S (2004) Mater Trans 45:2200

    Article  CAS  Google Scholar 

  26. Wang YM, Ma E, Chen MW (2002) Appl Phys Lett 80:2395

    Article  CAS  Google Scholar 

  27. Valiev RZ (2004) Nature Mater 3:511

    Article  CAS  Google Scholar 

  28. Porter DA, Easterling KE (1992) Phase Transformations in Metals and Alloys. 2nd ed., Chapman and Hall, London, UK

  29. Schumacher S, Birringer R, Strauss R, Gleiter H (1989) Acta Metall 37:2485

    Article  CAS  Google Scholar 

  30. Nieman GW, Weertman JR, Siegel RW (1991) J Mater Res 6:1012

    CAS  Google Scholar 

  31. El-Sherik AM, Erb U, Palumbo G, Aust KT (1992) Scripta Metall Mater 27:1185

    Article  CAS  Google Scholar 

  32. Weertman JR (1993) Mater Sci Eng A166:161

    CAS  Google Scholar 

  33. Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) Acta Metall 44:4619

    CAS  Google Scholar 

  34. Meyers MA, Mishra A, Benson DJ (2006) JOM 58(4):41

    CAS  Google Scholar 

  35. Chokshi AH, Rosen A, Karch J, Gleiter H (1989) Scripta Mater 21:1679

    Article  Google Scholar 

  36. Jang JSC, Kock CC (1990) J Mater Res 5:498

    CAS  Google Scholar 

  37. Liu XD, Hu ZQ, Ding BZ (1992) Nanostruct Mater 2:545

    Article  Google Scholar 

  38. Nieh TG, Wadsworth J (1991) Scripta Metall Mater 25:955

    Article  CAS  Google Scholar 

  39. Scattergood RO, Koch CC (1992) Scripta Metall Mater 27:1195

    Article  CAS  Google Scholar 

  40. Wang N, Wang Z, Aust KT, Erb U (1997) Mater Sci Eng A237:150

    Article  CAS  Google Scholar 

  41. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2004) Nature Mater 3:43

    Article  CAS  Google Scholar 

  42. Kovács I, Zsoldos L (1973) Dislocations and Plastic Deformation. Academy Press, Budapest, Hungary

  43. Pande CS, Masumura RA, Armstrong RW (1993) Nanostruct Mater 2:323

    Article  CAS  Google Scholar 

  44. Mohamed FA, Xun Y (2003) Mater Sci Eng A354:133

    CAS  Google Scholar 

  45. Dalla Torre F, Lapovok R, Sandlin J, Thomson PF, Davies CHJ, Pereloma EV (2004) Acta Mater 52:4819

    Article  CAS  Google Scholar 

  46. Zerilli FJ, Armstrong RW (1987) J Appl Phys 61:1816

    Article  CAS  Google Scholar 

  47. Zehetbauer M, Seumer V (1993) Acta Mater 41:577

    Article  CAS  Google Scholar 

  48. Zehetbauer M (1993) Acta Mater 41:589

    Article  CAS  Google Scholar 

  49. Chinh NQ, Illy J, Horita Z, Langdon TG (2005) Mater Sci Eng A410–411:234

    Google Scholar 

  50. Chinh NQ, Vörös G, Szommer P, Horita Z, Langdon TG (2006) Mater Sci Forum 503–504:1001

    Google Scholar 

  51. Wang YM, Ma E (2004) Mater Sci Eng A375–377:46

    Google Scholar 

  52. Xu C, Furukawa M, Horita Z, Langdon TG (2005) Mater Sci Eng A398:66

    CAS  Google Scholar 

  53. Van Swygenhoven H, Caro A (1997) Appl Phys Lett 71:1652

    Article  Google Scholar 

  54. Schiøtz J, Di Tolla FD, Jacobsen KW (1998) Nature 391:561

    Article  Google Scholar 

  55. Vinogradov A, Hashimoto S, Patlan V, Kitagawa K (2001) Mater Sci Eng A319–321:862

    Google Scholar 

  56. Huang Y, Langdon TG (2003) Mater Sci Eng A358:114

    CAS  Google Scholar 

  57. Yu CY, Sun PL, Kao PW, Chang CP (2005) Scripta Mater 52:359

    Article  CAS  Google Scholar 

  58. Chinh NQ, Szommer P, Horita Z, Langdon TG (2006) Adv Mater 18:34

    Article  CAS  Google Scholar 

  59. Kovács Zs, Chinh NQ, Lendvai J, Horita Z, Langdon TG (2002) Mater Sci Forum 396–402:1073

    Google Scholar 

  60. Bérces G, Chinh NQ, Juhász A, Lendvai J (1998) Acta Mater 46:2029

    Article  Google Scholar 

  61. Bérces G, Chinh NQ, Juhász A, Lendvai J (1998) J Mater Res 13:1411

    Google Scholar 

  62. Chinh NQ, Csikor F, Kovács Zs, Lendvai J (2000) J Mater Res 15:1037

    CAS  Google Scholar 

  63. Chinh NQ, Horváth Gy, Kovács Zs, Lendvai J (2002) Mater Sci Eng A324:219

    CAS  Google Scholar 

  64. Chinh NQ, Gubicza J, Kovács Zs, Lendvai J (2004) J Mater Res 19:31

    CAS  Google Scholar 

  65. Gubicza J, Chinh NQ, Horita Z, Langdon TG (2004) Mater Sci Eng A387–389:55

    Google Scholar 

  66. Dubravina A, Zehetbauer MJ, Schafler E, Alexandrov IV (2004) Mater Sci Eng A387:817

    Google Scholar 

  67. Gubicza J, Balogh L, Hellmig RJ, Estrin Y, Ungár T (2005) Mater Sci Eng A400–401:334

    Google Scholar 

  68. Kuzel R, Matej Z, Cherkaska V, Pesicka J, Cízek J, Procházka I, Islamgaliev RK (2004) J Alloys Comp 378:242

    Article  CAS  Google Scholar 

  69. Schafler E, Steiner G, Korznikova E, Kerber M, Zehetbauer MJ (2005) Mater Sci Eng A410–411:169

    Google Scholar 

  70. Schafler E, Dubravina A, Mingler B, Karnthaler HP, Zehetbauer M (2006) Mater Sci Forum 503–504:51

    Google Scholar 

  71. Gubicza J, Chinh NQ, Krállics Gy, Schiller I, Ungár T (2006) Curr Appl Phys 6:194

    Article  Google Scholar 

  72. Zhilyaev AP, Gubicza J, Suriñach S, Baró MD, Langdon TG (2003) Mater Sci Forum 426:4507

    Google Scholar 

  73. Gubicza J, Krállics Gy, Schiller I, Malgin D (2004) Mater Sci Forum 473–474:453

    Google Scholar 

  74. Gubicza J, Schiller I, Chinh NQ, Illy J (2006) Mater Sci Forum 537–538:169

    Google Scholar 

  75. Starink MJ, Wang SC (2003) Acta Mater 51:5131

    Article  CAS  Google Scholar 

  76. Hughes DA, Hansen N (2000) Acta Mater 48:2985

    Article  CAS  Google Scholar 

  77. Xu C, Dixon W, Furukawa M, Horita Z, Langdon TG (2003) Mater Lett 57:3588

    Article  CAS  Google Scholar 

  78. Xu C, Furukawa M, Horita Z, Langdon TG (2003) Acta Mater 51:6139

    Article  CAS  Google Scholar 

  79. Xu C, Furukawa M, Horita Z, Langdon TG (2005) Acta Mater 53:749

    Article  CAS  Google Scholar 

  80. Xu C, Langdon TG (2005) Mater Sci Eng A410–411:398

    Google Scholar 

  81. Xu C, Langdon TG (2006) Mater Sci Forum 503–504:77

    Google Scholar 

  82. Kawasaki M, Xu C, Langdon TG (2005) Acta Mater 53:5353

    Article  CAS  Google Scholar 

  83. Kawasaki M, Xu C, Langdon TG (2006) Mater Sci Forum 503–504:83

    Google Scholar 

  84. Lee S, Berbon PB, Furukawa M, Horita Z, Nemoto M, Tsenev NK, Valiev RZ, Langdon TG (1999) Mater Sci Eng A272:63

    CAS  Google Scholar 

  85. Komura S, Furukawa M, Horita Z, Nemoto M, Langdon TG (2001) Mater Sci Eng A297:111

    CAS  Google Scholar 

  86. Mckenzie PW, Lapovok R, Thomson PF (2006) Mater Sci Forum 503–504:657

    Article  Google Scholar 

  87. Lee S, Utsunomiya A, Akamatsu H, Neishi K, Furukawa M, Horita Z, Langdon TG (2002) Acta Mater 50:553

    Article  CAS  Google Scholar 

  88. Muruyama M, Horita Z, Hono K (2001) Acta Mater 49:21

    Article  Google Scholar 

  89. Zhang Z, Hosoda S, Kim I-S, Watanabe Y (2006) Mater Sci Eng A 425:55

    Article  CAS  Google Scholar 

  90. Vinogradov A, Patlan V, Suzuki Y, Kitagawa K, Kopylov VI (2002) Acta Mater 50:1639

    Article  CAS  Google Scholar 

  91. Gao N, Starink MJ, Furukawa M, Horita Z, Xu C, Langdon TG (2006) Mater Sci Forum 503–504:275

    Google Scholar 

  92. Zhao YH, Liao XZ, Jin Z, Valiev RZ, Zhu YT (2004) Acta Mater 52:4589

    Article  CAS  Google Scholar 

  93. Kocks UF (1966) Phil Mag 13:541

    Google Scholar 

Download references

Acknowledgements

The research was supported in part by the Hungarian National Scientific Research Fund, OTKA under Contract Numbers F-047057, T-038048, and T-043247 (NQC and JG) and in part by the National Science Foundation of the United States under Grant No. DMR-024333l (TGL). JG is grateful for the support of a Bolyai János Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Q. Chinh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinh, N.Q., Gubicza, J. & Langdon, T.G. Characteristics of face-centered cubic metals processed by equal-channel angular pressing. J Mater Sci 42, 1594–1605 (2007). https://doi.org/10.1007/s10853-006-0900-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0900-3

Keywords

Navigation