Journal of Materials Science

, Volume 42, Issue 13, pp 4757–4762 | Cite as

α Transition of polyamide 6 in chemically bonded polyamide 6/polytetrafluoroethylene compounds studied by dynamic mechanical thermal analysis and dielectric thermal analysis

  • Jun ZhaoEmail author


The α transition of polyamide 6 (PA 6) component in chemically bonded PA 6/polytetrafluoroethylene (PTFE) compounds is studied by dynamic mechanical thermal analysis (DMTA) and dielectric thermal analysis (DETA). It is found that DMTA shows better compatibility between two components than DETA does. It is also found that at the α transition temperature of PA 6 component (T α PA 6 ), the dynamic mechanical response of PTFE component is remarkable while its dielectric response is negligible. The effect of PTFE component on the segmental mobility of PA 6 component is discussed on the basis of DMTA, DETA and differential scanning calorimetry (DSC) results and the chemical bonding effect is found to play the dominant role. The measurement of apparent activation energy (ΔE a) shows that the addition of PTFE component reduces the cooperativity of the α transition of PA 6 component.


Differential Scanning Calorimetry PTFE DETA Dynamic Mechanical Thermal Analysis Interfacial Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support from the Joint Program between Max Planck Society (MPG) and Chinese Academy of Sciences (CAS) is appreciated. The author would also like to thank Dr. D. Lehmann (Institute for Polymer Research, Dresden, Germany) for providing the samples.


  1. 1.
    Hupfer B, Lehmann D, Reinhardt G, Lappan U, Geissler U, Lunkwitz K, Kunze K (2001) Kunstst Plast Eur 91:50Google Scholar
  2. 2.
    Lehmann D, Hupfer B, Lappan U, Pompe G, Haussler L, Jehnichen D, Janke A, Geissler U, Reinhardt R, Lunkwitz K, Franke R, Kunze K (2002) Des Monomers Polym 5:317CrossRefGoogle Scholar
  3. 3.
    Eichhorn KJ, Lehmann D, Voigt D (1996) J Appl Polym Sci 62:2053CrossRefGoogle Scholar
  4. 4.
    Haeussler L, Pompe G, Lehmann D, Lappan U (2001) Macromol Symp 164:411CrossRefGoogle Scholar
  5. 5.
    Pompe G, Haeussler L, Poetschke P, Voigt D, Janke A, Geissler U, Hupfer B, Reinhardt G, Lehmann D (2005) J Appl Polym Sci 98:1308CrossRefGoogle Scholar
  6. 6.
    Pompe G, Haeussler L, Adam G, Eichhorn K-J, Janke A, Hupfer B, Lehmann D (2005) J Appl Polym Sci 98:1317CrossRefGoogle Scholar
  7. 7.
    Factor BJ, Mopsik FI, Han CC (1996) Macromolecules 29:2318CrossRefGoogle Scholar
  8. 8.
    Canadas JC, Diego JA, Sellares J, Mudarra M, Belana J, Diaz-Calleja R, Sanchis MJ (2000) Polymer 41:2899CrossRefGoogle Scholar
  9. 9.
    Hardy L, Stevenson I, Boiteux G, Seytre G, Schonhals A (2001) Polymer 42:5679CrossRefGoogle Scholar
  10. 10.
    Vatalis AS, Kanapitsas A, Delides CG, Viras K, Pissis P (2001) J Appl Polym Sci 80:1071CrossRefGoogle Scholar
  11. 11.
    Zhao J, Wang J, Li C, Fan Q (2002) Macromolecules 35:3097CrossRefGoogle Scholar
  12. 12.
    Song R, Zhao J, Stamm M (2004) Macromol Mater Eng 289:1053CrossRefGoogle Scholar
  13. 13.
    Dong W, Zhao J, Li C, Guo M, Zhao D, Fan Q (2002) Polym Bull (Berlin) 49:197CrossRefGoogle Scholar
  14. 14.
    van Krevelen DW (2003) Properties of polymers, their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, 3rd completely revised edn. Elsevier, AmsterdamGoogle Scholar
  15. 15.
    Starkweather HW, Zoller JP, Jones GA, Vega AJ (1982) J Polym Sci Polym Phys 20:751CrossRefGoogle Scholar
  16. 16.
    Leyva ME, Soares BG, Khastgir D (2002) Polymer 43:7505CrossRefGoogle Scholar
  17. 17.
    Zetsche A, Kremer F, Jung W, Schulze H (1990) Polymer 31:1883CrossRefGoogle Scholar
  18. 18.
    Starkweather HW, Avakian P, Matheson RR, Fontanella JJ, Wintersgill MC (1991) Macromolecules 24:3853CrossRefGoogle Scholar
  19. 19.
    Starkweather HW, Avakian P, Matheson RR, Fontanella JJ, Wintersgill MC (1992) Macromolecules 25:1475CrossRefGoogle Scholar
  20. 20.
    Starkweather HW, Avakian P, Fontanella JJ, Wintersgill MC (1994) Macromolecules 27:610CrossRefGoogle Scholar
  21. 21.
    Boyer RF (1973) Macromolecules 6:288CrossRefGoogle Scholar
  22. 22.
    Boyer RF (1973) J Macromol Sci Phys B8:503Google Scholar
  23. 23.
    Struik LCE (1987) Polymer 28:1521, 1534; (1989) 30:799, 815Google Scholar
  24. 24.
    Vogel H (1921) Phys Z 22:645Google Scholar
  25. 25.
    Fulcher GS (1925) J Am Ceram Soc 8:339CrossRefGoogle Scholar
  26. 26.
    Starkweather HW (1993) Macromolecules 26:4805CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Max Planck Institute for Polymer ResearchMainzGermany

Personalised recommendations